8 resultados para integrable, birational, priodic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The all-loop anisotropic Thirring model interpolates between the WZW model and the non-Abelian T-dual of the anisotropic principal chiral model. We focus on the SU(2) case and we prove that it is classically integrable by providing its Lax pair formulation. We derive its underlying symmetry current algebra and use it to show that the Poisson brackets of the spatial part of the Lax pair, assume the Maillet form. In this way we procure the corresponding r and s matrices which provide non-trivial solutions to the modified Yang–Baxter equation.
Resumo:
We construct two-parameter families of integrable λ -deformations of two-dimensional field theories. These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a principal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and the SU(2)/U(1) exact coset CFT, we show that these deformations are related to bi-Yang–Baxter generalisations of η-deformations via Poisson–Lie T-duality and analytic continuation. We illustrate the quantum behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang–Baxter σ-model for a general group is one-loop renormalisable.
Resumo:
We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G . Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2) and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.
Resumo:
We prove large deviation results for sums of heavy-tailed random elements in rather general convex cones being semigroups equipped with a rescaling operation by positive real numbers. In difference to previous results for the cone of convex sets, our technique does not use the embedding of cones in linear spaces. Examples include the cone of convex sets with the Minkowski addition, positive half-line with maximum operation and the family of square integrable functions with arithmetic addition and argument rescaling.
Resumo:
In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.
Resumo:
In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka–Forstnerič manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930s, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview chapter we present three classes of properties: (1) density property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.
Resumo:
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group SO(2, 4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.