2 resultados para insect vector
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
African trypanosomes are insect-borne parasites that cause sleeping sickness in humans and nagana in domesticated animals. Successful transmission is the outcome of crosstalk between the trypanosome and its insect vector, the tsetse fly. This enables the parasite to undergo successive rounds of differentiation, proliferation and migration, culminating in the infection of a new mammalian host. Several stage- and species-specific parasite surface molecules have been identified and there are new insights into their regulation in the fly. Tsetse flies are often refractory to infection with trypanosomes. While many environmental and physiological factors are known to influence infection, our detailed understanding of tsetse-trypanosome relationships is still in its infancy. Recent studies have identified a number of tsetse genes that show altered expression patterns in response to microbial infections, some of which have also been implicated in modulating trypanosome transmission.
Resumo:
The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.