8 resultados para inorganic carbon forms
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
Resumo:
Methane (CH4) and carbon dioxide emissions from lakes are relevant for assessing the greenhouse gas output of wetlands. However, only few standardized datasets describe concentrations of these gases in lakes across different geographical regions. We studied concentrations and stable carbon isotopic composition (δ13C) of CH4 and dissolved inorganic carbon (DIC) in 32 small lakes from Finland, Sweden, Germany, the Netherlands, and Switzerland in late summer. Higher concentrations and δ13C values of DIC were observed in calcareous lakes than in lakes on non-calcareous areas. In stratified lakes, δ13C values of DIC were generally lower in the hypolimnion due to the degradation of organic matter (OM). Unexpectedly, increased δ13C values of DIC were registered above the sediment in several lakes. This may reflect carbonate dissolution in calcareous lakes or methanogenesis in deepwater layers or in the sediments. Surface water CH4 concentrations were generally higher in western and central European lakes than in Fennoscandian lakes, possibly due to higher CH4 production in the littoral sediments and lateral transport, whereas CH4 concentrations in the hypolimnion did not differ significantly between the regions. The δ13C values of CH4 in the sediment suggest that δ13C values of biogenic CH4 are not necessarily linked to δ13C values of sedimentary OM but may be strongly influenced by OM quality and methanogenic pathway. Our study suggests that CH4 and DIC cycling in small lakes differ between geographical regions and that this should be taken into account when regional studies on greenhouse gas emissions are upscaled to inter-regional scales.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
ABSTRACT: Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0�340 000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94�0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.
Resumo:
Rapidly increasing atmospheric CO2 is not only changing the climate system but may also affect the biosphere directly through stimulation of plant growth and ecosystem carbon and nutrient cycling. Although forest ecosystems play a critical role in the global carbon cycle, experimental information on forest responses to rising CO2 is scarce, due to the sheer size of trees. Here, we present a synthesis of the only study world-wide where a diverse set of mature broadleaved trees growing in a natural forest has been exposed to future atmospheric CO2 levels (c. 550ppm) by free-air CO2 enrichment (FACE). We show that litter production, leaf traits and radial growth across the studied hardwood species remained unaffected by elevated CO2 over 8years. CO2 enrichment reduced tree water consumption resulting in detectable soil moisture savings. Soil air CO2 and dissolved inorganic carbon both increased suggesting enhanced below-ground activity. Carbon release to the rhizosphere and/or higher soil moisture primed nitrification and nitrate leaching under elevated CO2; however, the export of dissolved organic carbon remained unaltered.Synthesis. Our findings provide no evidence for carbon-limitation in five central European hardwood trees at current ambient CO2 concentrations. The results of this long-term study challenge the idea of a universal CO2 fertilization effect on forests, as commonly assumed in climate-carbon cycle models.
Resumo:
For the detection of climate change, not only the magnitude of a trend signal is of significance. An essential issue is the time period required by the trend to be detectable in the first place. An illustrative measure for this is time of emergence (ToE), that is, the point in time when a signal finally emerges from the background noise of natural variability. We investigate the ToE of trend signals in different biogeochemical and physical surface variables utilizing a multi-model ensemble comprising simulations of 17 Earth system models (ESMs). We find that signals in ocean biogeochemical variables emerge on much shorter timescales than the physical variable sea surface temperature (SST). The ToE patterns of pCO2 and pH are spatially very similar to DIC (dissolved inorganic carbon), yet the trends emerge much faster – after roughly 12 yr for the majority of the global ocean area, compared to between 10 and 30 yr for DIC. ToE of 45–90 yr are even larger for SST. In general, the background noise is of higher importance in determining ToE than the strength of the trend signal. In areas with high natural variability, even strong trends both in the physical climate and carbon cycle system are masked by variability over decadal timescales. In contrast to the trend, natural variability is affected by the seasonal cycle. This has important implications for observations, since it implies that intra-annual variability could question the representativeness of irregularly sampled seasonal measurements for the entire year and, thus, the interpretation of observed trends.
Resumo:
Five test runs were performed to assess possible bias when performing the loss on ignition (LOI) method to estimate organic matter and carbonate content of lake sediments. An accurate and stable weight loss was achieved after 2 h of burning pure CaCO3 at 950 °C, whereas LOI of pure graphite at 530 °C showed a direct relation to sample size and exposure time, with only 40-70% of the possible weight loss reached after 2 h of exposure and smaller samples losing weight faster than larger ones. Experiments with a standardised lake sediment revealed a strong initial weight loss at 550 °C, but samples continued to lose weight at a slow rate at exposure of up to 64 h, which was likely the effect of loss of volatile salts, structural water of clay minerals or metal oxides, or of inorganic carbon after the initial burning of organic matter. A further test-run revealed that at 550 °C samples in the centre of the furnace lost more weight than marginal samples. At 950 °C this pattern was still apparent but the differences became negligible. Again, LOI was dependent on sample size. An analytical LOI quality control experiment including ten different laboratories was carried out using each laboratory's own LOI procedure as well as a standardised LOI procedure to analyse three different sediments. The range of LOI values between laboratories measured at 550 °C was generally larger when each laboratory used its own method than when using the standard method. This was similar for 950 °C, although the range of values tended to be smaller. The within-laboratory range of LOI measurements for a given sediment was generally small. Comparisons of the results of the individual and the standardised method suggest that there is a laboratory-specific pattern in the results, probably due to differences in laboratory equipment and/or handling that could not be eliminated by standardising the LOI procedure. Factors such as sample size, exposure time, position of samples in the furnace and the laboratory measuring affected LOI results, with LOI at 550 °C being more susceptible to these factors than LOI at 950 °C. We, therefore, recommend analysts to be consistent in the LOI method used in relation to the ignition temperatures, exposure times, and the sample size and to include information on these three parameters when referring to the method.
Resumo:
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.