17 resultados para injury data quality
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Data on antimicrobial use play a key role in the development of policies for the containment of antimicrobial resistance. On-farm data could provide a detailed overview of the antimicrobial use, but technical and methodological aspects of data collection and interpretation, as well as data quality need to be further assessed. The aims of this study were (1) to quantify antimicrobial use in the study population using different units of measurement and contrast the results obtained, (2) to evaluate data quality of farm records on antimicrobial use, and (3) to compare data quality of different recording systems. During 1 year, data on antimicrobial use were collected from 97 dairy farms. Antimicrobial consumption was quantified using: (1) the incidence density of antimicrobial treatments; (2) the weight of active substance; (3) the used daily dose and (4) the used course dose for antimicrobials for intestinal, intrauterine and systemic use; and (5) the used unit dose, for antimicrobials for intramammary use. Data quality was evaluated by describing completeness and accuracy of the recorded information, and by comparing farmers' and veterinarians' records. Relative consumption of antimicrobials depended on the unit of measurement: used doses reflected the treatment intensity better than weight of active substance. The use of antimicrobials classified as high priority was low, although under- and overdosing were frequently observed. Electronic recording systems allowed better traceability of the animals treated. Recording drug name or dosage often resulted in incomplete or inaccurate information. Veterinarians tended to record more drugs than farmers. The integration of veterinarian and farm data would improve data quality.
Resumo:
OBJECTIVE: To describe the electronic medical databases used in antiretroviral therapy (ART) programmes in lower-income countries and assess the measures such programmes employ to maintain and improve data quality and reduce the loss of patients to follow-up. METHODS: In 15 countries of Africa, South America and Asia, a survey was conducted from December 2006 to February 2007 on the use of electronic medical record systems in ART programmes. Patients enrolled in the sites at the time of the survey but not seen during the previous 12 months were considered lost to follow-up. The quality of the data was assessed by computing the percentage of missing key variables (age, sex, clinical stage of HIV infection, CD4+ lymphocyte count and year of ART initiation). Associations between site characteristics (such as number of staff members dedicated to data management), measures to reduce loss to follow-up (such as the presence of staff dedicated to tracing patients) and data quality and loss to follow-up were analysed using multivariate logit models. FINDINGS: Twenty-one sites that together provided ART to 50 060 patients were included (median number of patients per site: 1000; interquartile range, IQR: 72-19 320). Eighteen sites (86%) used an electronic database for medical record-keeping; 15 (83%) such sites relied on software intended for personal or small business use. The median percentage of missing data for key variables per site was 10.9% (IQR: 2.0-18.9%) and declined with training in data management (odds ratio, OR: 0.58; 95% confidence interval, CI: 0.37-0.90) and weekly hours spent by a clerk on the database per 100 patients on ART (OR: 0.95; 95% CI: 0.90-0.99). About 10 weekly hours per 100 patients on ART were required to reduce missing data for key variables to below 10%. The median percentage of patients lost to follow-up 1 year after starting ART was 8.5% (IQR: 4.2-19.7%). Strategies to reduce loss to follow-up included outreach teams, community-based organizations and checking death registry data. Implementation of all three strategies substantially reduced losses to follow-up (OR: 0.17; 95% CI: 0.15-0.20). CONCLUSION: The quality of the data collected and the retention of patients in ART treatment programmes are unsatisfactory for many sites involved in the scale-up of ART in resource-limited settings, mainly because of insufficient staff trained to manage data and trace patients lost to follow-up.
Resumo:
High-quality data are essential for veterinary surveillance systems, and their quality can be affected by the source and the method of collection. Data recorded on farms could provide detailed information about the health of a population of animals, but the accuracy of the data recorded by farmers is uncertain. The aims of this study were to evaluate the quality of the data on animal health recorded on 97 Swiss dairy farms, to compare the quality of the data obtained by different recording systems, and to obtain baseline data on the health of the animals on the 97 farms. Data on animal health were collected from the farms for a year. Their quality was evaluated by assessing the completeness and accuracy of the recorded information, and by comparing farmers' and veterinarians' records. The quality of the data provided by the farmers was satisfactory, although electronic recording systems made it easier to trace the animals treated. The farmers tended to record more health-related events than the veterinarians, although this varied with the event considered, and some events were recorded only by the veterinarians. The farmers' attitude towards data collection was positive. Factors such as motivation, feedback, training, and simplicity and standardisation of data collection were important because they influenced the quality of the data.
Resumo:
The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7–8 TeV had calorimeter data quality suitable for physics analysis.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
The key role players of brain swelling seen after severe human head injury have only been partly determined. We used our human head injury data base to determine relationships between potassium, glutamate, lactate and cerebral blood flow (CBF). A total of 70 severely head injured patients (GCS < or = 8) were studied using intracerebral microdialysis to measure extracellular glutamate, potassium and lactate. Xenon CT was used to determine regional cerebral blood flow (rCBF). The mean +/- SEM of the r value of all patients, between potassium and glutamate, and potassium and lactate was 0.25 +/- 0.04 (p < 0.0001) and 0.17 +/- 0.06 (p = 0.006), respectively, demonstrating in both cases a positive relationship. rCBF was negatively correlated with potassium with marginal significance (r = -0.35, p = 0.08). When separated into two groups, patients with contusion had higher potassium levels than patients without contusion (1.55 +/- 0.03 mmol/l versus 1.26 +/- 0.02 mmol/l, respectively). These results in severely head injured patients confirm previous in vitro and animal studies in which relationships between potassium, glutamate, lactate and CBF were found. Potassium efflux is a major determinant of cell swelling leading to clinically significant cytotoxic edema due to increased glutamate release during reduced cerebral blood flow.
Resumo:
BACKGROUND We describe the setup of a neonatal quality improvement tool and list which peer-reviewed requirements it fulfils and which it does not. We report on the so-far observed effects, how the units can identify quality improvement potential, and how they can measure the effect of changes made to improve quality. METHODS Application of a prospective longitudinal national cohort data collection that uses algorithms to ensure high data quality (i.e. checks for completeness, plausibility and reliability), and to perform data imaging (Plsek's p-charts and standardized mortality or morbidity ratio SMR charts). The collected data allows monitoring a study collective of very low birth-weight infants born from 2009 to 2011 by applying a quality cycle following the steps 'guideline - perform - falsify - reform'. RESULTS 2025 VLBW live-births from 2009 to 2011 representing 96.1% of all VLBW live-births in Switzerland display a similar mortality rate but better morbidity rates when compared to other networks. Data quality in general is high but subject to improvement in some units. Seven measurements display quality improvement potential in individual units. The methods used fulfil several international recommendations. CONCLUSIONS The Quality Cycle of the Swiss Neonatal Network is a helpful instrument to monitor and gradually help improve the quality of care in a region with high quality standards and low statistical discrimination capacity.
Resumo:
Systems for the identification and registration of cattle have gradually been receiving attention for use in syndromic surveillance, a relatively recent approach for the early detection of infectious disease outbreaks. Real or near real-time monitoring of deaths or stillbirths reported to these systems offer an opportunity to detect temporal or spatial clusters of increased mortality that could be caused by an infectious disease epidemic. In Switzerland, such data are recorded in the "Tierverkehrsdatenbank" (TVD). To investigate the potential of the Swiss TVD for syndromic surveillance, 3 years of data (2009-2011) were assessed in terms of data quality, including timeliness of reporting and completeness of geographic data. Two time-series consisting of reported on-farm deaths and stillbirths were retrospectively analysed to define and quantify the temporal patterns that result from non-health related factors. Geographic data were almost always present in the TVD data; often at different spatial scales. On-farm deaths were reported to the database by farmers in a timely fashion; stillbirths were less timely. Timeliness and geographic coverage are two important features of disease surveillance systems, highlighting the suitability of the TVD for use in a syndromic surveillance system. Both time series exhibited different temporal patterns that were associated with non-health related factors. To avoid false positive signals, these patterns need to be removed from the data or accounted for in some way before applying aberration detection algorithms in real-time. Evaluating mortality data reported to systems for the identification and registration of cattle is of value for comparing national data systems and as a first step towards a European-wide early detection system for emerging and re-emerging cattle diseases.
Resumo:
OBJECTIVE This study is a prospective, controlled clinical and electrophysiologic trial examining the chronic course of posttraumatic sleep-wake disturbances (SWD). METHODS We screened 140 patients with acute, first-ever traumatic brain injury of any severity and included 60 patients for prospective follow-up examinations. Patients with prior brain trauma, other neurologic or systemic disease, drug abuse, or psychiatric comorbidities were excluded. Eighteen months after trauma, we performed detailed sleep assessment in 31 participants. As a control group, we enrolled healthy individuals without prior brain trauma matched for age, sex, and sleep satiation. RESULTS In the chronic state after traumatic brain injury, sleep need per 24 hours was persistently increased in trauma patients (8.1 ± 0.5 hours) as compared to healthy controls (7.1 ± 0.7 hours). The prevalence of chronic objective excessive daytime sleepiness was 67% in patients with brain trauma compared to 19% in controls. Patients significantly underestimated excessive daytime sleepiness and sleep need, emphasizing the unreliability of self-assessments on SWD in trauma patients. CONCLUSIONS This study provides prospective, controlled, and objective evidence for chronic persistence of posttraumatic SWD, which remain underestimated by patients. These results have clinical and medicolegal implications given that SWD can exacerbate other outcomes of traumatic brain injury, impair quality of life, and are associated with public safety hazards.
Resumo:
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of 1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.
Resumo:
The UNESCO listing as World Heritage Site confirms the outstanding qualities of the high-mountain region around the Great Aletsch Glacier. The region of the World Heritage Site now faces the responsibility to make these qualities visible and to preserve them for future generations. Consequently the qualities of the site must not be regarded in isolation but in the context of the entire region with its dynamics and developments. Regional monitoring is the observation and evaluation of temporal changes in target variables. It is thus an obligation towards UNESCO, who demands regular reports about the state of the listed World Heritage assets. It also allows statements about sustainable regional development and can be the basis for early recognition of threats to the outstanding qualities. Monitoring programmes face three major challenges: first, great care must be taken in defining the target qualities to be monitored or the monitoring would remain vague. Secondly, the selection of ideal indicators to describe these qualities is impeded by inadequate data quality and availability, compromises are inevitable. Thirdly, there is always an element of insecurity in the interpretation of the results as to what influences and determines the changes in the target qualities. The first survey of the monitoring programme confirmed the exceptional qualities of the region and also highlighted problematic issues.
Resumo:
We investigate the changes of extreme European winter (December-February) precipitation back to 1700 and show for various European regions that return periods of extremely wet and dry winters are subject to significant changes both before and after the onset of anthropogenic influences. Generally, winter precipitation has become more extreme. We also examine the spatial pattern of the changes of the extremes covering the last 300 years where data quality is sufficient. Over central and Eastern Europe dry winters occurred more frequently during the 18th and the second part of the 19th century relative to 1951–2000. Dry winters were less frequent during both the 18th and 19th century over the British Isles and the Mediterranean. Wet winters have been less abundant during the last three centuries compared to 1951–2000 except during the early 18th century in central Europe. Although winter precipitation extremes are affected by climate change, no obvious connection of these changes was found to solar, volcanic or anthropogenic forcing. However, physically meaningful interpretation with atmospheric circulation changes was possible.
Resumo:
Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and motor functions in human subjects, but research into the cerebral control of emotional and motivational function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are research designs and multimodal approaches to answering the central questions in the field. We provide a detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related signal loss, image distortion, physiological and motion artifacts and colocalized Resting State Networks (RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in these problematic regions with gradient compensated multiecho EPI or high resolution EPI with parallel imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging studies of emotion encounter many difficulties regarding the limitations of measurement precision, research design, and strategies of validating neuropsychological emotion constructs, considerable improvement in data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of activity in the brain. This will provide additional information as an aid to assessment, categorization, and treatment of patients with emotional and personality disorders.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.
Resumo:
A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.