3 resultados para inhibition kinetics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An enantioselective CE method was used to identify the ability of CYP450 enzymes and their stereoselectivity in catalyzing the transformation of propafenone (PPF) to 5-hydroxy-propafenone (5OH-PPF) and N-despropyl-propafenone (NOR-PPF). Using in vitro incubations with single CYP450 enzymes (SUPERSOMES), 5OH-PPF is shown to be selectively produced by CYP2D6 and N-dealkylation is demonstrated to be mediated by CYP2D6, CYP3A4, CYP1A2, and CYP1A1. For the elucidation of kinetic aspects of the metabolism with CYP2D6 and CYP3A4, incubations with individual PPF enantiomers and racemic PPF were investigated. With the exception of the dealkylation in presence of R-PPF only, which can be described by the Michaelis-Menten model, all CYP2D6-induced reactions were found to follow autoactivation kinetics. For CYP3A4, all NOR-PPF enantiomer formation rates as function of PPF enantiomer concentration were determined to follow substrate inhibition kinetics. The formation of NOR-PPF by the different enzymes is stereoselective and is reduced significantly when racemic PPF is incubated. Clearance values obtained for CYP3A4 dealkylation are stereoselective whereas those of CYP2D6 hydroxylation are not. This paper reports the first investigation of the PPF hydroxylation and dealkylation kinetics by the CYP2D6 enzyme and represents the first report in which enantioselective CE data provide the complete in vitro kinetics of metabolic steps of a drug.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and anesthetic drug ketamine and the α2 -adrenergic receptor-agonist medetomidine that is used for sedation and analgesia. As racemic medetomidine or its active enantiomer dexmedetomidine are often coadministered with racemic or S-ketamine in animals and dexmedetomidine together with S- or racemic ketamine in humans, drug-drug interactions are likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM), and human CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of ketamine, a stereoselectivity that is not observed for CYP3A4. Induction is observed at a low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM, and HLM. Based on these results, S-ketamine combined with dexmedetomidine should be the best option for canines. The enantioselective CE assay with highly sulfated γ-cyclodextrin as chiral selector is an effective tool for determining kinetic and inhibition parameters of metabolic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantioselective CE with sulfated cyclodextrins as chiral selectors was used to determine the CYP3A4-catalyzed N-demethylation kinetics of ketamine to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral phencyclidine derivative, was incubated with recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and as single enantiomer. Alkaline liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 mg/mL) or highly sulfated γ-cyclodextrin (2%, w/v). Data obtained in the absence of ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) kinetics. Data generated in the presence of ketoconazole as the inhibitor could best be fitted to a one-site competitive model and inhibition constants were calculated using the equation of Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for the incubation of racemic ketamine were found to be larger compared with those obtained with the incubation of single ketamine enantiomers.