32 resultados para industrial automation and business models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.
Resumo:
Reproductive skew theory seeks to integrate social and ecological factors thought to influence the division of reproduction among group-living animals. However, most reproductive skew models only examine interactions between individuals of the same sex. Here, we suggest that females can influence group stability and conflict among males by modifying their clutch size and may do so if they benefit from the presence of subordinate male helpers or from reduced conflict. We develop 3 models, based on concessions-based, restraint, and tug-of-war models, in which female clutch size is variable and ask when females will increase their clutch size above that which would be optimal in the absence of male-male conflict. In concessions-based and restraint models, females should increase clutch size above their optima if the benefits of staying for subordinate males are relatively low. Relatedness between males has no effect on clutch size. When females do increase clutch size, the division of reproduction between males is not influenced by relatedness and does not differ between restraint and concessions-based models. Both of these predictions are in sharp contrast to previous models. In tug-of-war models, clutch size is strongly influenced by relatedness between males, with the largest clutches, but the fewest surviving offspring, produced when males are unrelated. These 3 models demonstrate the importance of considering third-party interests in the decisions of group-living organisms.
Resumo:
The aim of this study was to compare standard plaster models with their digital counterparts for the applicability of the Index of Complexity, Outcome, and Need (ICON). Generated study models of 30 randomly selected patients: 30 pre- (T(0)) and 30 post- (T(1)) treatment. Two examiners, calibrated in the ICON, scored the digital and plaster models. The overall ICON scores were evaluated for reliability and reproducibility using kappa statistics and reliability coefficients. The values for reliability of the total and weighted ICON scores were generally high for the T(0) sample (range 0.83-0.95) but less high for the T(1) sample (range 0.55-0.85). Differences in total ICON score between plaster and digital models resulted in mostly statistically insignificant values (P values ranging from 0.07 to 0.19), except for observer 1 in the T(1) sample. No statistically different values were found for the total ICON score on either plaster or digital models. ICON scores performed on computer-based models appear to be as accurate and reliable as ICON scores on plaster models.