106 resultados para in-beam PET
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Patients with chronic pain disorders often show somatosensory disturbances that are considered to be functional. This paper aims at a more precise clinical description and at a documentation of functional neuroimaging correlates of this phenomenon. We examined 30 consecutive patients with unilaterally accentuated chronic pain not explained by persistent peripheral tissue damage and ipsilateral somatosensory disturbances including upper and lower extremities and trunk. The patients were assessed clinically and with conventional brain CT or MRI scan. In the last 11 patients functional neuroimaging was carried out (18-fluordeoxyglucose positron emission tomography=FDG-PET). Depressive symptoms were assessed with the Hamilton depression scale (HAMD-17) and pain intensity was rated with a visual analogue scale for pain (VAS). All patients suffered from mild to moderate depressive symptoms. All patients had experienced a prolonged antecedent phase of severe emotional distress; most of them remembered a "trigger episode of somatic pain" on the affected side. Somatosensory deficits were a replicable hyposensitivity to touch and heat perception of nondermatomal distribution. Conventional imaging procedures (brain CT or MRI scans) showed no structural changes. However, in 11 patients functional imaging with FDG-PET showed a significant hypometabolic pattern of changes in cortical and subcortical areas, mainly in the post-central gyrus, posterior insula, putamen, and anterior cingulate cortex. In summary, pain-related nondermatomal somatosensory deficits (NDSDs) are a phenomenon involving biological as well as psychosocial factors with replicable neuroperceptive clinical findings and a complex neurodysfunctional pattern in the FDG-PET.
Resumo:
PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.
Resumo:
Two hemotropic mycoplasmas have been recognized in cats, Mycoplasma haemofelis and "Candidatus Mycoplasma haemominutum." We recently described a third feline hemoplasma species, designated "Candidatus Mycoplasma turicensis," in a Swiss cat with hemolytic anemia. This isolate induced anemia after experimental transmission to two specific-pathogen-free cats and analysis of the 16S rRNA gene revealed its close relationship to rodent hemotropic mycoplasmas. The agent was recently shown to be prevalent in Swiss pet cats. We sought to investigate the presence and clinical importance of "Candidatus Mycoplasma turicensis" infection in pet cats outside of Switzerland and to perform the molecular characterization of isolates from different countries. A "Candidatus Mycoplasma turicensis"-specific real-time PCR assay was applied to blood samples from 426 United Kingdom (UK), 147 Australian, and 69 South African pet cats. The 16S rRNA genes of isolates from different countries were sequenced and signalment and laboratory data for the cats were evaluated for associations with "Candidatus Mycoplasma turicensis" infection. Infections were detected in samples from UK, Australian, and South African pet cats. Infection was associated with the male gender, and "Candidatus Mycoplasma haemominutum" and M. haemofelis coinfection. Coinfected cats exhibited significantly lower packed cell volume (PCV) values than uninfected cats. Phylogenetic analyses revealed that some Australian and South African "Candidatus Mycoplasma turicensis" isolates branched away from the remaining isolates. In summary, "Candidatus Mycoplasma turicensis" infection in pet cats exists over a wide geographical area and significantly decreased PCV values are observed in cats coinfected with other feline hemoplasmas.
Resumo:
This article describes the clinical applicability of a nerve stimulator–guided technique, previously described in dogs, to block the sciatic and the femoral nerves in 4 pet rabbits (Oryctolagus cuniculus) undergoing hind limb surgeries. Preanesthetic intramuscular doses of medetomidine (0.08 mg/kg), ketamine (15 mg/kg), and buprenorphine (0.03 mg/kg) were administered to the rabbit patients. The rabbits were intubated and general anesthesia was maintained using isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine at a volume of 0.05 mL/kg/nerve. Sciatic-femoral block was feasible in rabbits, and the motoric responses following electrical stimulation of both nerves were consistent with those reported in dogs after successful nerve location. Iatrogenic complications, namely nerve damage and local anesthetic toxicity, did not occur. Based on these results, the authors conclude that the sciatic-femoral nerve block described in dogs can be safely performed in rabbits. Clinical trials are required to assess the analgesic efficacy of the combined sciatic-femoral nerve block in rabbits as a part of multimodal pain management.
Resumo:
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a number of human tumors and has been targeted with radiolabeled bombesin analogues for the diagnosis and therapy of these cancers. Seven bombesin analogues containing various linkers and peptide sequences were designed, synthesized, radiolabeled with (18)F, and characterized in vitro and in vivo as potential PET imaging agents. Binding studies displayed nanomolar binding affinities toward human GRPR for all synthesized bombesin analogues. Two high-affinity peptide candidates 6b (K(i) = 0.7 nM) and 7b (K(i) = 0.1 nM) were chosen for further in vivo evaluation. Both tracers revealed specific uptake in GRPR-expressing PC-3 tumors and the pancreas. Compared to [(18)F]6b, compound [(18)F]7b was characterized by superior tumor uptake, higher specificity of tracer uptake, and more favorable tumor-to-nontarget ratios. In vivo PET imaging allowed for the visualization of PC-3 tumor in nude mice suggesting that [(18)F]7b is a promising PET tracer candidate for the diagnosis of GRPR-positive tumors in humans.
Resumo:
Positron emission tomography (PET) has proven to be a clinically valuable imaging modality, particularly for oncology staging and therapy follow-up. The introduction of combined PET/CT imaging has helped address challenging imaging situations when anatomical information on PET-only was inadequate for accurate lesion localization. After a decade of PET/CT these combined systems have matured technically. Today, whole-body oncology staging is available with PET/CT in 15 min, or less. This review details recent developments in combined PET/CT instrumentation and points to implications for major applications in clinical oncology.
Resumo:
A publication entitled “A default mode of brain function” initiated a new way of looking at functional imaging data. In this PET study the authors discussed the often-observed consistent decrease of brain activation in a variety of tasks as compared with the baseline. They suggested that this deactivation is due to a task-induced suspension of a default mode of brain function that is active during rest, i.e. that there exists intrinsic well-organized brain activity during rest in several distinct brain regions. This suggestion led to a large number of imaging studies on the resting state of the brain and to the conclusion that the study of this intrinsic activity is crucial for understanding how the brain works. The fact that the brain is active during rest has been well known from a variety of EEG recordings for a very long time. Different states of the brain in the sleep–wake continuum are characterized by typical patterns of spontaneous oscillations in different frequency ranges and in different brain regions. Best studied are the evolving states during the different sleep stages, but characteristic EEG oscillation patterns have also been well described during awake periods (see Chapter 1 for details). A highly recommended comprehensive review on the brain's default state defined by oscillatory electrical brain activities is provided in the recent book by György Buzsaki, showing how these states can be measured by electrophysiological procedures at the global brain level as well as at the local cellular level.
Resumo:
We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)
Resumo:
In this paper, we report on an optical tolerance analysis of the submillimeter atmospheric multi-beam limb sounder, STEAMR. Physical optics and ray-tracing methods were used to quantify and separate errors in beam pointing and distortion due to reflector misalignment and primary reflector surface deformations. Simulations were performed concurrently with the manufacturing of a multi-beam demonstrator of the relay optical system which shapes and images the beams to their corresponding receiver feed horns. Results from Monte Carlo simulations show that the inserts used for reflector mounting should be positioned with an overall accuracy better than 100 μm (~ 1/10 wavelength). Analyses of primary reflector surface deformations show that a deviation of magnitude 100 μm can be tolerable before deployment, whereas the corresponding variations should be less than 30 μm during operation. The most sensitive optical elements in terms of misalignments are found near the focal plane. This localized sensitivity is attributed to the off-axis nature of the beams at this location. Post-assembly mechanical measurements of the reflectors in the demonstrator show that alignment better than 50 μm could be obtained.
Resumo:
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.
Resumo:
A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.