16 resultados para impurities
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A Mt. Everest ice core spanning 1860–2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. BC concentrations from 1975–2000 relative to 1860–1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers.
Resumo:
High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage) essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22) between Greenland Interstadials (GIs) 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22) and 83 kyr b2k (onset of GI-21). From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr) but not with that of the GICC05modelext chronology (2620 yr) or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m) and Δage (498 to 601 yr) at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr), observing that temperature (represented by the δ15N proxy) increases before CH4 concentration by no more than a few decades.
Resumo:
For improving the identification of potential heparin impurities such as oversulfated chondroitin sulfate (OSCS) the standard 2D (1)H-(1)H NMR NOESY was applied. Taking advantage of spin diffusion and adjusting the experimental parameters accordingly additional contaminant-specific signals of the corresponding sugar ring protons can easily be detected. These are usually hidden by the more intense heparin signals. Compared to the current 1D (1)H procedure proposed for screening commercial unfractionated heparin samples and focusing on the contaminants acetyl signals more informative and unique fingerprints may be obtained. Correspondingly measured (1)H fingerprints of a few potential impurities are given and their identification in two contaminated commercial heparin samples is demonstrated. The proposed 2D NOESY method is not intended to replace the current 1D method for detecting and quantifying heparin impurities but may be regarded as a valuable supplement for an improved and more reliable identification of these contaminants.
Resumo:
Vorlanite (CaU6+)O4 Fm3̄m, a = 5.3647(9) Å, V = 154.40(4) Å3, Z = 2 was found in larnite pyrometamorphic rocks of the Hatrurim formation at the Jabel Harmun locality, Judean Desert, Palestinian Autonomy. Vorlanite crystals from these larnite rocks are dark-gray with greenish hue in transmitted light. This color in transmitted light is in contrast to dark-red vorlanite Fm3̄m, a = 5.3813(2) Å, V = 155.834(10)Å3, Z = 2 from the type locality Upper Chegem caldera, Northern Caucasus. Heating above 750 °C of dark-gray vorlanite from the Jabel Harmun, as well as dark-red vorlanite from Caucasus, led to formation of yellow trigonal uranate CaUO4. The unusual color of vorlanite from Jabel Harmun is assumed to be related to small impurities of tetravalent uranium.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
Resumo:
When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.
Resumo:
The purpose of the present study was to evaluate the ranges of Hounsfield unit (HU) found in body fluids, putrefaction fluids, and blood on postmortem CT and how these ranges are affected by postmortem interval, temperatures, and CT beam energy. Body fluids, putrefaction fluids, and blood from a total of 53 corpses were analyzed to determine the ranges of HU values from postmortem CT images that were taken prior to autopsy. The fluids measured in CT images were obtained at autopsy and examined in terms of macroscopic and microscopic appearances. Body fluids and blood were also collected in plastic bottles, which were subjected to CT scans at different beam energies (80-130 kV) and at various fluid temperatures (4 to 40 °C). At a postmortem interval of 1 to 4 days, the ranges of HU values of the serous fluids (13-38 HU) and the nonsedimented blood (40-88 HU) did not overlap. In the sedimented blood, the upper serum layer exhibited HU value ranges that overlapped with those of the serous fluids. The putrefaction fluids exhibited a range of HU values between 80 and -130 HU. Elevated HU values were observed in fluids with accretive cell impurities. HU values decreased slightly with increasing temperature and CT beam energy. We concluded that serous fluids and blood in fresh corpses can be characterized and differentiated from each other based on HU value ranges. In contrast, body fluids in decomposed corpses cannot be differentiated by their HU value ranges. Different beam energies and corpse temperatures had only minor influences on HU value ranges and therefore should not be obstacles to the differentiation and characterization of body fluids and blood.
Resumo:
Dental erosion is caused by repeated short episodes of exposure to acids. Dental minerals are calcium-deficient, carbonated hydroxyapatites containing impurity ions such as Na(+), Mg(2+) and Cl(-). The rate of dissolution, which is crucial to the progression of erosion, is influenced by solubility and also by other factors. After outlining principles of solubility and acid dissolution, this chapter describes the factors related to the dental tissues on the one hand and to the erosive solution on the other. The impurities in the dental mineral introduce crystal strain and increase solubility, so dentine mineral is more soluble than enamel mineral and both are more soluble than hydroxyapatite. The considerable differences in structure and porosity between dentine and enamel influence interactions of the tissues with acid solutions, so the relative rates of dissolution do not necessarily reflect the respective solubilities. The rate of dissolution is further influenced strongly by physical factors (temperature, flow rate) and chemical factors (degree of saturation, presence of inhibitors, buffering, pH, fluoride). Temperature and flow rate, as determined by the method of consumption of a product, strongly influence erosion in vivo. The net effect of the solution factors determines the overall erosive potential of different products. Prospects for remineralization of erosive lesions are evaluated.
Resumo:
Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.
Resumo:
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.
Resumo:
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.
Resumo:
Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; atomistic calculations not being able to match experimentally determined activation energies for oxygen vacancy diffusion. These calculations are, however, usually performed for perfectly pure crystals, whereas virtually every experimental alumina sample contains a significant fraction of impurity/dopants ions. In this study, we use atomistic defect cluster and nudged elastic band (NEB) calculations to model the effect of Mg impurities/dopants on defect binding energies and migration barriers. We find that oxygen vacancies can form energetically favorable clusters with Mg, which reduces the number of mobile species and leads to an additional 1.5 eV energy barrier for the detachment of a single vacancy from Mg. The migration barriers of diffusive jumps change such that an enhanced concentration of oxygen vacancies is expected around Mg ions. Mg impurities were also found to cause destabilization of certain vacancy configurations as well as enhanced vacancy–vacancy interaction.