4 resultados para immunophenotyping
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The European LeukemiaNet (ELN), workpackage 10 (WP10) was designed to deal with diagnosis matters using morphology and immunophenotyping. This group aimed at establishing a consensus on the required reagents for proper immunophenotyping of acute leukemia and lymphoproliferative disorders. Animated discussions within WP10, together with the application of the Delphi method of proposals circulation, quickly led to post-consensual immunophenotyping panels for disorders on the ELN website. In this report, we established a comprehensive description of these panels, both mandatory and complementary, for both types of clinical conditions. The reason for using each marker, sustained by relevant literature information, is provided in detail. With the constant development of immunophenotyping techniques in flow cytometry and related software, this work aims at providing useful guidelines to perform the most pertinent exploration at diagnosis and for follow-up, with the best cost benefit in diseases, the treatment of which has a strong impact on health systems.
Resumo:
We analyzed immunohistochemically the expression of CD24 and spliced variants of CD44v5 and v9 in invasive micropapillary carcinoma (IMPC) of the breast that is a rather aggressive tumor characterized by alteration of cells adhesion molecules, early lymph node metastases and poor prognosis. We analyzed 31 high-grade IMPCs and compared their expression to 22 high grade (G3) invasive ductal carcinomas of the breast (IDCs). We found a higher expression of CD24 in high-grade IMPCs with a peculiar inverted apical localization, compared to IDCs, showing a strong cytoplasmic staining; normal breast tissue resulted completely negative. IMPCs showed reduced expression of CD44v5 and CD44v9 compared with IDCs, but without a statistical significant difference. This study demonstrated that IMPC represents a distinct entity of breast carcinoma with high expression of CD24 with a typical inverted apical membrane pattern and reduction of CD44 isoforms v5 and v9, compared to IDCs. These features could explain the high lymph-vascular invasion propensity and higher metastatic capability of these tumors and could be a useful tool for a future targeted therapy.
Resumo:
Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.