174 resultados para immune priming

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4+ T cells are involved in several immune response pathways used to control viral infections. In this study, a group of genetically defined goats was immunized with a synthetic peptide known to encompass an immunodominant helper T-cell epitope of caprine arthritis encephalitis virus (CAEV). Fifty-five days after challenge with the molecularly cloned CAEV strain CO, the vaccinated animals had a higher proviral load than the controls. The measurement of gamma interferon and interleukin-4 gene expression showed that these cytokines were reliable markers of an ongoing immune response but their balance did not account for more or less efficient control of CAEV replication. In contrast, granulocyte-macrophage colony-stimulating factor appeared to be a key cytokine that might support virus replication in the early phase of infection. The observation of a potential T-cell-mediated enhancement of virus replication supports other recent findings showing that lentivirus-specific T cells can be detrimental to the host, suggesting caution in designing vaccine candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In patients with HIV-1 infection who are starting combination antiretroviral therapy (ART), the incidence of immune reconstitution inflammatory syndrome (IRIS) is not well defined. We did a meta-analysis to establish the incidence and lethality of the syndrome in patients with a range of previously diagnosed opportunistic infections, and examined the relation between occurrence and the degree of immunodeficiency. Systematic review identified 54 cohort studies of 13 103 patients starting ART, of whom 1699 developed IRIS. We calculated pooled cumulative incidences with 95% credibility intervals (CrI) by Bayesian methods and did a random-effects metaregression to analyse the relation between CD4 cell count and incidence of IRIS. In patients with previously diagnosed AIDS-defining illnesses, IRIS developed in 37.7% (95% CrI 26.6-49.4) of those with cytomegalovirus retinitis, 19.5% (6.7-44.8) of those with cryptococcal meningitis, 15.7% (9.7-24.5) of those with tuberculosis, 16.7% (2.3-50.7) of those with progressive multifocal leukoencephalopathy, and 6.4% (1.2-24.7) of those with Kaposi's sarcoma, and 12.2% (6.8-19.6) of those with herpes zoster. 16.1% (11.1-22.9) of unselected patients starting ART developed any type of IRIS. 4.5% (2.1-8.6) of patients with any type of IRIS died, 3.2% (0.7-9.2) of those with tuberculosis-associated IRIS died, and 20.8% (5.0-52.7) of those with cryptococcal meningitis died. Metaregression analyses showed that the risk of IRIS is associated with CD4 cell count at the start of ART, with a high risk in patients with fewer than 50 cells per microL. Occurrence of IRIS might therefore be reduced by initiation of ART before immunodeficiency becomes advanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 g/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 g/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. Aims To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. Methods T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-γ-ELISpot responses to HCV core peptides, that predominantly stimulate CD4+ T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. Results The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log10 IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (−0.3 log10 IU/ml, p=0.02). Conclusions Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans harbour nearly 100 trillion intestinal bacteria that are essential for health. Millions of years of co-evolution have moulded this human-microorganism interaction into a symbiotic relationship in which gut bacteria make essential contributions to human nutrient metabolism and in return occupy a nutrient-rich environment. Although intestinal microorganisms carry out essential functions for their hosts, they pose a constant threat of invasion owing to their sheer numbers and the large intestinal surface area. In this Review, we discuss the unique adaptations of the intestinal immune system that maintain homeostatic interactions with a diverse resident microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosal immunity protects the epithelial barrier by immune exclusion of foreign antigens and by anti-inflammatory tolerance mechanisms, but there is a continuing debate about the role of secretory immunoglobulins (SIgs), particularly SIgA, in the protection against allergy and other inflammatory diseases. Lack of secretory antibodies may cause immune dysfunction and affect mucosally induced (oral) tolerance against food antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generated Fas-activated serine threonine phosphoprotein (FAST)-deficient mice (FAST(-/-)) to study the in vivo role of FAST in immune system function. In a model of house dust mite-induced allergic pulmonary inflammation, wild type mice develop a mixed cellular infiltrate composed of eosinophils, lymphocytes, and neutrophils. FAST(-/-) mice develop airway inflammation that is distinguished by the near absence of neutrophils. Similarly, LPS-induced alveolar neutrophil recruitment is markedly reduced in FAST(-/-) mice compared with wild type controls. This is accompanied by reduced concentrations of cytokines (TNF-alpha and IL-6 and -23) and chemoattractants (MIP-2 and keratinocyte chemoattractant) in bronchoalveolar lavage fluids. Because FAST(-/-) neutrophils exhibit normal chemotaxis and survival, impaired neutrophil recruitment is likely to be due to reduced production of chemoattractants within the pulmonary parenchyma. Studies using bone marrow chimeras implicate lung resident hematopoietic cells (e.g., pulmonary dendritic cells and/or alveolar macrophages) in this process. In conclusion, our results introduce FAST as a proinflammatory factor that modulates the function of lung resident hematopoietic cells to promote neutrophil recruitment and pulmonary inflammation.