16 resultados para image fusion

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What's known on the subject? And what does the study add? We have previously shown that percutaneous radiofrequency ablation guided by image-fusion technology allows for precise needle placement with real time ultrasound superimposed with pre-loaded imaging, removing the need for real-time CT or MR guidance. Emerging technology also allows real-time tracking of a treatment needle within an organ in a virtually created 3D format. To our knowledge, this is the first study utilising a sophisticated ultrasound-based navigation system that uses both image-fusion and real-time probe-tracking technologies for in-vivo renal ablative intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Angiographic C-arm CT may allow performing percutaneous stereotactic tumor ablations in the interventional radiology suite. Our purpose was to evaluate the accuracy of using C-arm CT for single and multimodality image fusions and to compare the targeting accuracy of liver lesions with the reference standard of MDCT. MATERIALS AND METHODS C-arm CT and MDCT scans were obtained of a nonrigid rapid prototyping liver phantom containing five 1-mm targets that were placed under skin-simulating deformable plastic foam. Target registration errors of image fusion were evaluated for single-modality and multimodality image fusions. A navigation system and stereotactic aiming device were used to evaluate target positioning errors on postinterventional scans with the needles in place fused with the C-arm CT or MDCT planning images. RESULTS Target registration error of the image fusion showed no significant difference (p > 0.05) between both modalities. In five series with a total of 25 punctures for each modality, the lateral target positioning error (i.e., the lateral distance between the needle tip and the planned trajectory) was similar for C-arm CT (mean [± SD], 1.6 ± 0.6 mm) and MDCT (1.82 ± .97 mm) (p = 0.33). CONCLUSION In a nonrigid liver phantom, angiographic C-arm CT may provide similar image fusion accuracy for comparison of intra- and postprocedure control images with the planning images and enables stereotactic targeting accuracy similar to that of MDCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. MATERIALS AND METHODS Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. RESULTS Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. CONCLUSION Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES The aim of this Short Communication was to present a workflow for the superimposition of intraoral scan (IOS), cone-beam computed tomography (CBCT), and extraoral face scan (EOS) creating a 3D virtual dental patient. MATERIAL AND METHODS As a proof-of-principle, full arch IOS, preoperative CBCT, and mimic EOS were taken and superimposed to a unique 3D data pool. The connecting link between the different files was to detect existing teeth as constant landmarks in all three data sets. RESULTS This novel application technique successfully demonstrated the feasibility of building a craniofacial virtual model by image fusion of IOS, CBCT, and EOS under 3D static conditions. CONCLUSIONS The presented application is the first approach that realized the fusion of intraoral and facial surfaces combined with skeletal anatomy imaging. This novel 3D superimposition technique allowed the simulation of treatment planning, the exploration of the patients' expectations, and the implementation as an effective communication tool. The next step will be the development of a real-time 4D virtual patient in motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Craniosynostosis consists of a premature fusion of the sutures in an infant skull, which restricts the skull and brain growth. During the last decades there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumerence and intracranial volume. However, the variables have failed in describing the local deformations and morphological changes, which are proposed to more likely induce neurological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Craniosynostosis consists of a premature fusion of the sutures in an infant skull that restricts skull and brain growth. During the last decades, there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumference, and intracranial volume. However, these variables have failed in describing the local deformations and morphological changes that may have a role in the neurologic disorders observed in the patients. This report describes a rigid image registration-based method to evaluate outcomes of craniosynostosis surgical treatments, local quantification of head growth, and indirect intracranial volume change measurements. The developed semiautomatic analysis method was applied to computed tomography data sets of a 5-month-old boy with sagittal craniosynostosis who underwent expansion of the posterior skull with cranioplasty. Quantification of the local changes between pre- and postoperative images was quantified by mapping the minimum distance of individual points from the preoperative to the postoperative surface meshes, and indirect intracranial volume changes were estimated. The proposed methodology can provide the surgeon a tool for the quantitative evaluation of surgical procedures and detection of abnormalities of the infant skull and its development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.