11 resultados para hydrophobic interactions

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by 1H NMR spectroscopy. xCE-PVP complex formation was confirmed by 1H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). 1H1H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV–vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75 Å (complex with squalene) and 1.6 Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/ substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC (1)H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.