114 resultados para human impact

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

210Pb, 137Cs and 14C dated sediments of two late Holocene landslide lakes in the Provincial Park Lagunas de Yala (Laguna Rodeo, Laguna Comedero, 24°06′S, 65°30′W, 2100 m asl, northwestern Argentina) reveal a high-resolution multi-proxy data set of climate change and human impact for the past ca. 2000 years. Comparison of the lake sediment data set for the 20th century (sediment mass accumulation rates MARs, pollen spectra, nutrient and charcoal fluxes) with independent dendroecological data from the catchment (fire scars, tree growth) and long regional precipitation series (from 1934 onwards) show that (1) the lake sediment data set is internally highly consistent and compares well with independent data sets, (2) the chronology of the sediment is reliable, (3) large fires (1940s, 1983/1984–1989) as documented in the local fire scar frequency are recorded in the charcoal flux to the lake sediments and coincide with low wet-season precipitation rates (e.g., 1940s, 1983/1984) and/or high interannual precipitation variability (late 1940s), and (4) the regional increase in precipitation after 1970 is recorded in an increase in the MARs (L. Rodeo from 100 to 390 mg cm−2 yr−1) and in an increase in fern spores reflecting wet vegetation. The most significant change in MARs and nutrient fluxes (Corg and P) of the past 2000 years is observed with the transition from the Inca Empire to the Spanish Conquest around 1600 AD. Compared with the pre-17th century conditions, MARs increased by a factor of ca. 5 to >8 (to 800 +130, −280 mg cm−2 yr−1), PO4 fluxes increased by a factor of 7, and Corg fluxes by a factor of 10.5 for the time between 1640 and 1930 AD. 17th to 19th century MARs and nutrient fluxes also exceed 20th century values. Excess Pb deposition as indicated by a significant increase in Pb/Zr and Pb/Rb ratios in the sediments after the 1950s coincides with a rapid expansion of the regional mining industry. Excess Pb is interpreted as atmospheric deposition and direct human impact due to Pb smelting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation history for the study region is reconstructed on the basis of pollen, charcoal and AMS14C investigations of lake sediments from Lago del Segrino (calcareous bedrock) and Lago di Muzzano (siliceous bedrock). Late-glacial forests were characterised byBetula andPinus sylvestris. At the beginning of the Holocene they were replaced by temperate continental forest and shrub communities. A special type of temperate lowland forest, withAbies alba as the most important tree, was present in the period 8300 to 4500 B.P. Subsequently,Fagus, Quercus andAlnus glutinosa were the main forest components andA. alba ceased to be of importance.Castanea sativa andJuglans regia were probably introduced after forest clearance by fire during the first century A.D. On soils derived from siliceous bedrock,C. sativa was already dominant at ca. A.D. 200 (A.D. dates are in calendar years). In limestone areas, however,C. sativa failed to achieve a dominant role. After the introduction ofC. sativa, the main trees were initially oak (Quercus spp.) and later the walnut (Juglans regia). Ostrya carpinifolia became the dominant tree around Lago del Segrino only in the last 100–200 years though it had spread into the area at ca. 5000 cal. B.C. This recent expansion ofOstrya is confirmed at other sites and appears to be controlled by human disturbances involving especially clearance. It is argued that these forests should not be regarded as climax communities. It is suggested that under undisturbed succession they would develop into mixed deciduous forests consisting ofFraxinus excelsior, Tilia, Ulmus, Quercus and Acer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In terms of changing flow and sediment regimes of rivers, dams are often regarded as the most dominant form of human impact on fluvial systems. Dams can decrease the flux of water and sediments leading to channel changes such as upstream aggradation and downstream degradation. The opposite effects occur when dams are removed. Channel degradation often requires further intervention in terms of river bed and bank protection works. The situation evolves more complex in river systems that are impacted by a series of dams due to feedback processes between the different system compartments. A number of studies have recently investigated geomorphic systems using connectivity approaches to improve the understanding of geomorphic system response to change. This paper presents a case study investigating the impact of dam construction, dam removal and dam-related river bed and bank protection measures on the sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers using a combination of DEM analyses, field surveys and landscape evolution modelling. For both river systems the results revealed low sediment connectivity accompanied by a fine river bed sediment facies in river sections upstream of active dams and of removed dams with protection measures. Contrarily, high sediment connectivity which was accompanied by a coarse river bed sediment facies was observed in river sections either located downstream of active dams or of removed dams with upstream protection. In terms of channel changes, significant channel degradation was examined at locations downstream of active dams and of removed dams. Channel bed and bank protection measures prevent erosion and channel slope recovery after dam removal. Landscape evolution modeling revealed a complex geomorphic response to dam construction and dam removal as sediment output rates and therefore geomorphic processes have been shown to act in a non-linear manner. These insights are deemed to have major implications for river management and conservation, as quality and state of riverine habitats are determined by channel morphology and river bed sediment composition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.