16 resultados para hormonal therapy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Others have reported ocular toxicity after adjuvant chemoendocrine therapy, but this study looked at ocular toxicity in similarly treated patients from large randomized clinical trials. METHODS: Information was retrieved on incidence and timing of ocular toxicity from the International Breast Cancer Study Group (IBCSG) database of 4948 eligible patients randomized to receive tamoxifen or toremifene alone or in combination with chemotherapy (either concurrently or sequentially). Case reports of patients with ocular toxicity were evaluated to determine whether ocular toxicity occurred during chemotherapy and/or hormonal therapy. Additional information was obtained from participating institutions for patients in whom ocular toxicity occurred after chemotherapy but during administration of tamoxifen or toremifene. RESULTS: Ocular toxicity was reported in 538 of 4948 (10.9%) patients during adjuvant treatment, mainly during chemotherapy. Forty-five of 4948 (0.9%) patients had ocular toxicity during hormone therapy alone, but only 30 (0.6%) patients had ocular toxicity reported either without receiving any chemotherapy or beyond 3 months after completing chemotherapy and, thus, possibly related to tamoxifen or toremifene. In 3 cases, retinal alterations, without typical aspects of tamoxifen toxicity, were reported; 4 patients had cataract (2 bilateral), 12 impaired visual acuity, 10 ocular irritation, 1 optical neuritis, and the rest had other symptoms. CONCLUSION: Ocular toxicity during adjuvant therapy is a common side effect mainly represented by irritative symptoms due to chemotherapy. By contrast, ocular toxicity during hormonal therapy is rare and does not appear to justify a regular program of ocular examination. However, patients should be informed of this rare side effect so that they may seek prompt ophthalmic evaluation for ocular complaints.
Resumo:
BACKGROUND: The utility of chemotherapy for women who experience a locoregional recurrence after primary treatment of early breast cancer remains an open question. An international collaborative trial is being conducted by the Breast International Group (BIG), the International Breast Cancer Study Group (IBCSG), and the National Surgical Adjuvant Breast and Bowel Project (NSABP) to determine the effectiveness of cytotoxic therapy for these patients, either alone or in addition to selective use of hormonal therapy and trastuzumab. METHODS: The trial population includes women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery, but subsequently develop an isolated local and/or regional ipsilateral invasive recurrence. Excision of all macroscopic tumor without evidence of systemic disease is required for study entry. Patients are randomized to receive chemotherapy or no chemotherapy; type of chemotherapy is not protocol-specified. Radiation, hormonal therapy, and trastuzumab are given as appropriate. The primary endpoint is disease-free survival (DFS). Quality-of-life measurements are collected at baseline, and then at 9 and 12 months. The accrual goal is 977 patients. RESULTS: This report describes the characteristics of the first 99 patients. Sites of recurrence at study entry were: breast (56%), mastectomy scar/chest wall (35%), and regional lymph nodes (9%). Two-thirds of patients have estrogen-receptor-positive recurrences. CONCLUSION: This is the only trial actively investigating the question of "adjuvant" chemotherapy in locally recurrent breast cancer. The case mix of accrual to date indicates a broad representation of this patient population.
Resumo:
CONTEXT: Androgen deprivation therapy (ADT) is increasingly used for the treatment of prostate cancer (PCa), even in clinical settings in which there is no evidence-based proof of prolonged overall survival (OS). ADT, however, may be associated with numerous side effects, including an increased therapy-related cardiovascular mortality. OBJECTIVE: To discuss different clinical settings in which ADT is currently used and to critically weigh the benefits of ADT against its possible side effects. EVIDENCE ACQUISITION: A MEDLINE search was conducted to identify original articles and review articles addressing the efficacy and side effects of ADT for the treatment of PCa. Keywords consisted of prostate cancer, hormonal therapy, adverse effects, radical prostatectomy, and radiotherapy. The articles with the highest level of evidence for the various examined end points were identified with the consensus of all authors and were reviewed. EVIDENCE SYNTHESIS: Even short-term use of ADT may lead to numerous side effects, such as osteoporosis, obesity, sarcopenia, lipid alterations, insulin resistance, and increased risk for diabetes and cardiovascular morbidity. Despite these side effects, ADT is commonly used in various clinical settings in which a clear effect on improved OS has not been shown. CONCLUSIONS: ADT is associated with an increased risk of multiple side effects that may reduce quality of life and/or OS. Consequently, these issues should be discussed in detail with patients and their families before initiation of ADT. ADT should be used with knowledge of its potential long-term side effects and with possible lifestyle interventions, especially in settings with the highest risk-benefit ratio, to alleviate comorbidities.
Resumo:
A 40-year-old man was admitted to the emergency department with psychotic symptoms and marked hypothermia. He was known to have had a macroadenoma of the pituitary gland which had been excised 10 years before. No information about his current medication was available. Several hours after admission the patient developed signs of acute cardiac failure and cardiogenic shock. He was admitted to the intensive care unit, intubated and treated with vasoactive drugs. Later investigations revealed that the patient had stopped his hormonal therapy (hydrocortisone and thyroxine) at least 3 months previously.
Resumo:
In this phase III, multinational, randomized trial, the International Breast Cancer Study Group, Breast International Group, and the National Surgical Adjuvant Breast and Bowel Project will attempt to define the effectiveness of cytotoxic therapy for patients with locoregional recurrence of breast cancer. We will evaluate whether chemotherapy prolongs disease-free survival and, secondarily, whether its use improves overall survival and systemic disease-free survival. Quality of life measurements will be monitored during the first 12 months of the study. Women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery and who have undergone complete surgical excision of all macroscopic disease but who subsequently develop isolated local and/or regional ipsilateral invasive recurrence are eligible. Patients are randomized to observation/no adjuvant chemotherapy or to adjuvant chemotherapy; all suitable patients receive radiation, hormonal, and trastuzumab therapy. Radiation therapy is recommended for patients who have not received previous adjuvant radiation therapy but is required for those with microscopically positive margins. The radiation field must encompass the tumor bed plus a surrounding margin to a dose of >or= 40 Gy. Radiation therapy will be administered before, during, or after chemotherapy. All women with estrogen receptor-positive and/or progesterone receptor-positive recurrence must receive hormonal therapy, with the agent and duration to be determined by the patient's investigator. Adjuvant trastuzumab therapy is permitted for those with HER2- positive tumors, provided that intent to treat is declared before randomization. Although multidrug regimens are preferred, the agents, doses, and use of supportive therapy are at the discretion of the investigator.
Resumo:
Gender reassignment procedures are performed more frequently nowadays due to a multidisciplinary approach and improved techniques and selection process. Many male-to-female patients require bilateral breast augmentation as part of the transformation following the gender reassignment if they fail to develop female breast features after hormonal treatment. We report on a very rare incidence of male-to-female gender reassignment in a patient with Poland syndrome. A male-to-female transsexual on hormonal therapy for gender reassignment developed one normal female-shaped breast whereas the other breast remained hypoplastic. As a male, he was not aware of his chest wall deformity but it became a major issue after successful gender reassignment surgery. Our experience with the specific reconstructive considerations and recommendations regarding our surgical approach to this complex reconstructive problem are discussed.
Resumo:
Invasive lobular carcinoma (ILC) is the second most common type of breast cancer after invasive ductal carcinoma (IDC). It is characterized by unique clinical, biological and molecular properties. ILC is almost always positive for the estrogen receptor and is typically of a lower grade compared with IDC. We have reviewed selected literature on preoperative (neoadjuvant) and adjuvant systemic therapy of breast cancer focusing on the differential therapy of ILC. Despite the importance of this type of breast cancer, information about its specific treatment is sparse, in particular with regard to adjuvant systemic chemotherapy. ILC has significantly lower rates of response to neoadjuvant chemotherapy compared with IDC; however, the low chemosensitivity seems not to result in a survival disadvantage. Adjuvant hormonal therapy studies do not distinguish between ILC and IDC. Thus, recommendations about endocrine therapies are made using the same criteria as for IDC.
Resumo:
PURPOSE: To determine the acute and late genitourinary (GU) and gastrointestinal (GI) toxicity and present short-term biochemical no evidence of disease (bNED) rates after high-dose-rate brachytherapy (HDR-B) monotherapy. METHODS AND MATERIALS: Between October 2003 and June 2006, 36 patients with low (28) and intermediate (8) risk prostate cancer (PCA) were treated by HDR-B monotherapy. All patients received one implant and four fractions of 9.5Gy within 48h for a total prescribed dose (PD) of 38Gy. Five patients received hormonal therapy (HT). Median age was 63.5 years and median followup was 3 years (range, 0.4-4 years). Toxicity was scored according to the CTCAE version 3.0. Biochemical failure was defined according to the Phoenix criteria. RESULTS: Acute and late Grade 3 GU toxicity was observed in 1 (3%) and 4 (11%) patients, respectively. Grade 3 GI toxicity was absent. The three- year bNED survival rate was 100%. The sexual preservation rate in patients without HT was 75%. Late Grade 3 GU toxicity was associated with the planning target volume (PTV) V(100) (% PTV receiving > or =100% of the PD; p=0.036), D(90) (dose delivered to 90% of the PTV; p=0.02), and the urethral V(120) (urethral volume receiving > or =120% of the PD; p=0.043). The urethral V(120) was associated with increased PTV V(100) (p<0.001) and D(90) (p=0.003). CONCLUSIONS: After HDR-B monotherapy, late Grade 3 GU toxicity is associated with the urethral V(120) and the V(100) and D(90) of the PTV. Decrease of the irradiated urethral volume may reduce the GU toxicity and potentially improve the therapeutic ratio of this treatment.
Resumo:
Evidence is mounting that potentially curative systemic adjuvant therapy for early-stage breast cancer may result in cognitive impairment. Five published studies have investigated cognitive function in this setting, and the consistent results of all five studies suggest an adverse effect of adjuvant chemotherapy. These studies are reviewed with particular attention to their methodologic limitations. For example, all five studies used cross-sectional designs, none controlled for possible confounding hormonal factors, and three examined patients who had not received a uniform chemotherapy regimen. The potential roles of chemotherapy-induced menopause and of adjuvant hormonal therapy in cognitive impairment are also discussed. Priorities for future research include confirmation of an effect of adjuvant chemotherapy in a study with a longitudinal design, closer examination of the potential contribution of hormonal factors, and similar studies on the effect of adjuvant therapy on cognitive function in other cancer types. If an effect of systemic adjuvant therapy on cognitive function is confirmed, such an effect will have implications for informed consent. It may also result in incorporation of objective measures of cognition in clinical trials of adjuvant therapy and in the investigation of preventive interventions that might minimize the impact of cognitive dysfunction after cancer treatment.
Resumo:
Introduction. To assess the role of adjuvant androgen deprivation therapy (ADT) in high-risk prostate cancer patients (PCa) after surgery. Materials and Methods. The analysis case matched 172 high-risk PCa patients with positive section margins or non-organ confined disease and negative lymph nodes to receive adjuvant ADT (group 1, n = 86) or no adjuvant ADT (group 2, n = 86). Results. Only 11.6% of the patients died, 2.3% PCa related. Estimated 5-10-year clinical progression-free survival was 96.9% (94.3%) for group 1 and 73.7% (67.0%) for group 2, respectively. Subgroup analysis identified men with T2/T3a tumors at low-risk and T3b margins positive disease at higher risk for progression. Conclusion. Patients with T2/T3a tumors are at low-risk for metastatic disease and cancer-related death and do not need adjuvant ADT. We identified men with T3b margin positive disease at highest risk for clinical progression. These patients benefit from immediate adjuvant ADT.
Resumo:
Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.
Resumo:
The aim of this study was to explore the effect of long-term cross-sex hormonal treatment on cortical and trabecular bone mineral density and main biochemical parameters of bone metabolism in transsexuals. Twenty-four male-to-female (M-F) transsexuals and 15 female-to-male (F-M) transsexuals treated with either an antiandrogen in combination with an estrogen or parenteral testosterone were included in this cross-sectional study. BMD was measured by DXA at distal tibial diaphysis (TDIA) and epiphysis (TEPI), lumbar spine (LS), total hip (HIP) and subregions, and whole body (WB) and Z-scores determined for both the genetic and the phenotypic gender. Biochemical parameters of bone turnover, insulin-like growth factor-1 (IGF-1) and sex hormone levels were measured in all patients. M-F transsexuals were significantly older, taller and heavier than F-M transsexuals. They were treated by cross-sex hormones during a median of 12.5 years before inclusion. As compared with female age-matched controls, they showed a significantly higher median Z-score at TDIA and WB (1.7+/-1.0 and 1.8+/-1.1, P < 0.01) only. Based on the WHO definition, five (who did not comply with cross-sex hormone therapy) had osteoporosis. F-M transsexuals were treated by cross-sex hormones during a median of 7.6 years. They had significantly higher median Z-scores at TEPI, TDIA and WB compared with female age-matched controls (+0.9+/-0.2 SD, +1.0+/-0.4 SD and +1.4+/-0.3 SD, respectively, P < 0.0001 for all) and reached normal male levels except at TEPI. They had significantly higher testosterone and IGF-1 levels (p < 0.001) than M-F transsexuals. We conclude that in M-F transsexuals, BMD is preserved over a median of 12.5 years under antiandrogen and estrogen combination therapy, while in F-M transsexuals BMD is preserved or, at sites rich in cortical bone, is increased to normal male levels under a median of 7.6 years of androgen treatment in this cross sectional study. IGF-1 could play a role in the mediation of the effect of androgens on bone in F-M transsexuals.
Resumo:
BACKGROUND Trials assessing the benefit of immediate androgen-deprivation therapy (ADT) for treating prostate cancer (PCa) have often done so based on differences in detectable prostate-specific antigen (PSA) relapse or metastatic disease rates at a specific time after randomization. OBJECTIVE Based on the long-term results of European Organization for Research and Treatment of Cancer (EORTC) trial 30891, we questioned if differences in time to progression predict for survival differences. DESIGN, SETTING, AND PARTICIPANTS EORTC trial 30891 compared immediate ADT (n=492) with orchiectomy or luteinizing hormone-releasing hormone analog with deferred ADT (n=493) initiated upon symptomatic disease progression or life-threatening complications in randomly assigned T0-4 N0-2 M0 PCa patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Time to first objective progression (documented metastases, ureteric obstruction, not PSA rise) and time to objective castration-resistant progressive disease were compared as well as PCa mortality and overall survival. RESULTS AND LIMITATIONS After a median of 12.8 yr, 769 of the 985 patients had died (78%), 269 of PCa (27%). For patients receiving deferred ADT, the overall treatment time was 31% of that for patients on immediate ADT. Deferred ADT was significantly worse than immediate ADT for time to first objective disease progression (p<0.0001; 10-yr progression rates 42% vs 30%). However, time to objective castration-resistant disease after deferred ADT did not differ significantly (p=0.42) from that after immediate ADT. In addition, PCa mortality did not differ significantly, except in patients with aggressive PCa resulting in death within 3-5 yr after diagnosis. Deferred ADT was inferior to immediate ADT in terms of overall survival (hazard ratio: 1.21; 95% confidence interval, 1.05-1.39; p [noninferiority]=0.72, p [difference] = 0.0085). CONCLUSIONS This study shows that if hormonal manipulation is used at different times during the disease course, differences in time to first disease progression cannot predict differences in disease-specific survival. A deferred ADT policy may substantially reduce the time on treatment, but it is not suitable for patients with rapidly progressing disease.