16 resultados para historical approach
em BORIS: Bern Open Repository and Information System - Berna - Suiça
What does it mean to analyse the historical dimension of discourses? A discourse-historical approach
Resumo:
Judaism and Emotion breaks with stereotypes that, until recently, branded Judaism as a rigid religion of laws and prohibitions. Instead, authors from different fields of research discuss the subject of Judaism and emotion from various scholarly perspectives; they present an understanding of Judaism that does not exclude spirituality and emotions from Jewish thought. In doing so, the contributions account for the relation between the representation of emotion and the actual emotions that living and breathing human beings feel in their everyday lives. While scholars of rabbinic studies and theology take a historical-critical and socio-historical approach to the subject, musicologists and scholars of religious studies focus on the overall research question of how the literary representations of emotion in Judaism are related to ritual and musical performances within Jewish worship. They describe in a more holistic fashion how Judaism serves to integrate various aspects of social life. In doing so, they examine the dynamic interrelationship between Judaism, cognition, and culture.
Resumo:
BACKGROUND:: The interaction of sevoflurane and opioids can be described by response surface modeling using the hierarchical model. We expanded this for combined administration of sevoflurane, opioids, and 66 vol.% nitrous oxide (N2O), using historical data on the motor and hemodynamic responsiveness to incision, the minimal alveolar concentration, and minimal alveolar concentration to block autonomic reflexes to nociceptive stimuli, respectively. METHODS:: Four potential actions of 66 vol.% N2O were postulated: (1) N2O is equivalent to A ng/ml of fentanyl (additive); (2) N2O reduces C50 of fentanyl by factor B; (3) N2O is equivalent to X vol.% of sevoflurane (additive); (4) N2O reduces C50 of sevoflurane by factor Y. These four actions, and all combinations, were fitted on the data using NONMEM (version VI, Icon Development Solutions, Ellicott City, MD), assuming identical interaction parameters (A, B, X, Y) for movement and sympathetic responses. RESULTS:: Sixty-six volume percentage nitrous oxide evokes an additive effect corresponding to 0.27 ng/ml fentanyl (A) with an additive effect corresponding to 0.54 vol.% sevoflurane (X). Parameters B and Y did not improve the fit. CONCLUSION:: The effect of nitrous oxide can be incorporated into the hierarchical interaction model with a simple extension. The model can be used to predict the probability of movement and sympathetic responses during sevoflurane anesthesia taking into account interactions with opioids and 66 vol.% N2O.
Resumo:
Determination of an 'anaerobic threshold' plays an important role in the appreciation of an incremental cardiopulmonary exercise test and describes prominent changes of blood lactate accumulation with increasing workload. Two lactate thresholds are discerned during cardiopulmonary exercise testing and used for physical fitness estimation or training prescription. A multitude of different terms are, however, found in the literature describing the two thresholds. Furthermore, the term 'anaerobic threshold' is synonymously used for both, the 'first' and the 'second' lactate threshold, bearing a great potential of confusion. The aim of this review is therefore to order terms, present threshold concepts, and describe methods for lactate threshold determination using a three-phase model with reference to the historical and physiological background to facilitate the practical application of the term 'anaerobic threshold'.
A global historical ozone data set and prominent features of stratospheric variability prior to 1979
Resumo:
We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.
Resumo:
Upper-air observations are a fundamental data source for global atmospheric data products, but uncertainties, particularly in the early years, are not well known. Most of the early observations, which have now been digitized, are prone to a large variety of undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation in reanalysis projects. We apply a novel approach to estimate errors in upper-air temperature, geopotential height, and wind observations from the Comprehensive Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish between random errors, biases, and a term that quantifies the representativity of the observations. The method is based on a comparison of neighboring observations and is hence independent of metadata, making it applicable to a wide scope of observational data sets. The estimated mean random errors for all observations within the study period are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms−1for wind speed, and 21.4° for wind direction. The estimates are compared to results of previous studies and analyzed with respect to their spatial and temporal variability.
Resumo:
One of the main problems of flood hazard assessment in ungauged or poorly gauged basins is the lack of runoff data. In an attempt to overcome this problem we have combined archival records, dendrogeomorphic time series and instrumental data (daily rainfall and discharge) from four ungauged and poorly gauged mountain basins in Central Spain with the aim of reconstructing and compiling information on 41 flash flood events since the end of the 19th century. Estimation of historical discharge and the incorporation of uncertainty for the at-site and regional flood frequency analysis were performed with an empirical rainfall–runoff assessment as well as stochastic and Bayesian Markov Chain Monte Carlo (MCMC) approaches. Results for each of the ungauged basins include flood frequency, severity, seasonality and triggers (synoptic meteorological situations). The reconstructed data series clearly demonstrates how uncertainty can be reduced by including historical information, but also points to the considerable influence of different approaches on quantile estimation. This uncertainty should be taken into account when these data are used for flood risk management.
Resumo:
Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.