2 resultados para histocompatibility gene

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the effect of antibodies (Abs) directed against major histocompatibility complex (MHC) class II Abs on the proliferation of Theileria parva-infected (Tpi) T cells. Anti-MHC class II Abs exert a direct effect on Tpi T cells causing an acute block in their proliferation. The inhibition does not involve apoptosis and is also entirely reversible. The rapid arrest of DNA synthesis caused by anti-MHC class II Abs is not due to interference with the state of activation of the T cells since the transcriptional activator NF-kappa B remains activated in arrested cells. In addition, interleukin 2 (IL-2), IL-2R, and c-myc gene expression are also unaffected. By analyzing the cell-cycle phase distribution of inhibited cells, it could be shown that cells in all phases of the cell cycle are inhibited. The signal transduction pathway that results in inhibition was shown to be independent of protein kinase C and extracellular Ca2+. Tyrosine kinase inhibitors, however, partly reduced the level of inhibition and, conversely, phosphatase inhibitors enhanced it. The possible relevance of this phenomenon in other systems is discussed.