82 resultados para histidine-rich protein 2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic peptides containing a repetitive hexapeptide sequence (Ala-His-His-Ala-Ala-Asp) of malarial histidine-rich protein II were evaluated for binding with haem in vitro. The pattern of haem binding suggested that each repeat unit of this sequence provides one binding site for haem. Chloroquine inhibited the haem-peptide complex formation with preferential formation of a haem chloroquine complex. In vitro studies on haem polymerisation showed that none of the peptides could initiate haemozoin formation. However, they could inhibit haemozoin formation promoted by a malarial parasite extract, possibly by competitively binding free haem. These results indicate this hexapeptide sequence represents the haem binding site of the malarial histidine-rich protein and possibly the site of nucleation for haem polymerisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that proteins can be incorporated into the latticework of calcium phosphate layers when biomimetically coprecipitated with the inorganic components, upon the surfaces of titanium-alloy implants. In the present study, we wished to ascertain whether recombinant human bone morphogenetic protein 2 (rhBMP-2) thus incorporated retained its bioactivity as an osteoinductive agent. Titanium alloy implants were coated biomimetically with a layer of calcium phosphate in the presence of different concentrations of rhBMP-2 (0.1-10 microg/mL). rhBMP-2 was successfully incorporated into the crystal latticework, as revealed by protein blot staining. rhBMP-2 was taken up by the calcium phosphate coatings in a dose-dependent manner, as determined by ELISA. Rat bone marrow stromal cells were grown directly on these coatings for 8 days. Their osteogenicity was then assessed quantitatively by monitoring alkaline phosphatase activity. This parameter increased as a function of rhBMP-2 concentrations within the coating medium. rhBMP-2 incorporated into calcium phosphate coatings was more potent in stimulating the alkaline phosphatase activity of the adhering cell layer than was the freely suspended drug in stimulating that of cell layers grown on a plastic substratum. This system may be of osteoinductive value in orthopedic and dental implant surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Recombinant bone morphogenetic protein two (rhBMP2) has been utilised for a variety of clinical applications in orthopaedic surgery and dental procedures. Despite its widespread use, concerns have been raised regarding its short half-life and transient bioactivity in vivo. Recent investigation aimed at developing rhBMP2 synthesized from a shorter polypeptide chain (108 amino acids) has been undertaken. METHODS The osteopromotive properties of BMP2 were investigated on cell behaviour. Five concentrations of rhBMP2_108 including 10, 50, 100, 200 and 500 ng/ml were compared to a commercially available rhBMP2 (100 ng/ml). Each of the working concentrations of rhBMP2_108 were investigated on MC3T3-E1 osteoblasts for their ability to induce osteoblast recruitment, proliferation and differentiation as assessed by alkaline phosphatase (ALP) staining, alizarin red staining, and real-time PCR for genes encoding ALP, osteocalcin (OCN), collagen-1 (COL-1) and Runx2. RESULTS The results demonstrate that all concentrations of rhBMP2_108 significantly improved cell recruitment and proliferation of osteoblasts at 5 days post seeding. Furthermore, rhBMP2_108 had the most pronounced effects on osteoblast differentiation. It was found that rhBMP2_108 had over a four fold significant increase in ALP activity at seven and 14 days post-seeding and the concentrations ranging from 50 to 200 ng/ml demonstrated the most pronounced effects. Analysis of real-time PCR for genes encoding ALP, OCN, COL-1 and Runx2 further confirmed dose-dependant increases at 14 days post-seeding. Furthermore, alizarin red staining demonstrated a concentration dependant increase in staining at 14 days. CONCLUSION The results from the present study demonstrate that this shorter polypeptide chain of rhBMP2_108 is equally as bioactive as commercially available rhBMP2 for the recruitment of progenitor cells by facilitating their differentiation towards the osteoblast lineage. Future in vivo study are necessary to investigate its bioactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-sperm antibodies (ASA) have been described to be involved in immunological infertility. A possible antigen for ASA is the human cysteine-rich secretory protein 2 (CRISP-2), a sperm surface protein important in sperm-oocyte interaction. Furthermore, anti-CRISP-2 antibodies were shown to decrease fertility rates in vitro. Recently, we have reported cross-reacting antibodies recognizing CRISP-2 and antigen 5 from yellow jacket venom (Ves v 5) in human serum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109 controls were searched for mutations in FGFRL1. One patient was identified harboring a frameshift mutation in the intracellular domain of this novel receptor. The patient showed craniosynostosis, radio-ulnar synostosis and genital abnormalities and had previously been diagnosed with Antley-Bixler syndrome. The effect of the FGFRL1 mutation was studied in vitro. In a reporter gene assay, the wild-type as well as the mutant receptor inhibited FGF signaling. However, the mutant protein differed from the wild-type protein in its subcellular localization. Mutant FGFRL1 was mainly found at the plasma membrane where it interacted with FGF ligands, while the wild-type protein was preferentially located in vesicular structures and the Golgi complex. Two motifs from the intracellular domain of FGFRL1 appeared to be responsible for this differential distribution, a tandem tyrosine based motif and a histidine-rich sequence. Deletion of either one led to the preferential redistribution of FGFRL1 to the plasma membrane. It is therefore likely that mutant FGFRL1 contributes to the skeletal malformations of the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.