34 resultados para highlights
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Childhood adrenocortical tumors (ACT) are rare malignancies, except in southern Brazil, where a higher incidence rate is associated to a high frequency of the founder R337H TP53 mutation. To date, copy number alterations in these tumors have only been analyzed by low-resolution comparative genomic hybridization.
Resumo:
Orphan- or understudied-crops are mostly staple food crops in developing world. They are broadly classified under cereals, legumes, root crops, fruits and vegetables. These under-researched crops contribute to the diet of a large portion of resource-poor consumers and at the same time generate income for small-holder farmers in developing countries, particularly in Africa. In addition, they perform better than major crops of the world under extreme soil and climatic conditions. However, orphan crops are not without problems. Due to lack of scientific investigation, most of them produce low yields while others have a variety of toxins that affect the health of consumers. Here, we present some highlights on the status and future perspectives of the Tef Biotechnology Project that employs modern improvement technique in order to genetically improve tef (Eragrostis tef), one of the most important orphan crop in Africa. A reverse genetics approach known as TILLING (Targeting Induced Local Lesions IN Genome) is implemented in order to tackle lodging, the major yield limiting factor in tef.Key words: Orphan crops, underresearched crops, Eragrostis tef, TILLING, semi-dwarf.
Resumo:
Objective: IL23 is involved in chronic inflammation but its role in cancer progression is not fully elucidated. Here we characterize IL23 subunits p40, p19 and IL23 receptor (IL23R) in the normal-adenoma-carcinomametastasis cascade of colorectal cancers and their relationship to clinicopathological and outcome data. Method: Immunohistochemistry for IL23R, IL12p40, IL23 and IL23p19 (monoclonal) was performed on a multi-punch tissue microarray (n=213 patients). Expression differences between normal-adenomas-cancerslymph nodes were evaluated. Correlation with clinicopathological and outcome data was undertaken. Results were validated on an independent cohort (n=341 patients). Results: An increased expression from normal-adenoma-cancer was observed (p<0.0001; all) followed by a marked reduction in lymph nodes (p<0.0001; all). Cytoplasmic and/or membranous staining of all markers was unrelated to outcome. Nuclear IL23p19 staining occurred in 23.1%and was associated with smaller tumor diameter (p=0.0333), early pT (p=0.0213), early TNM (p=0.0186), absence of vascular (p=0.0124) and lymphatic invasion (p=0.01493) and favorable survival (univariate (p=0.014) and multivariable (p=0.0321) analysis). All IL23p19 positive patients were free of distant metastasis (p=0.0146). Survival and metastasis results could be validated in Cohort 2. Conclusion: The presence of nuclear IL23p19 is related to indolent tumor features and favorable outcome supporting a more ‘protective’ role of this protein in colorectal cancer progression
Resumo:
Oligonucleotides comprising unnatural building blocks, which interfere with the translation machinery, have gained increased attention for the treatment of gene-related diseases (e.g. antisense, RNAi). Due to structural modifications, synthetic oligonucleotides exhibit increased biostability and bioavailability upon administration. Consequently, classical enzyme-based sequencing methods are not applicable to their sequence elucidation and verification. Tandem mass spectrometry is the method of choice for performing such tasks, since gas-phase dissociation is not restricted to natural nucleic acids. However, tandem mass spectrometric analysis can generate product ion spectra of tremendous complexity, as the number of possible fragments grows rapidly with increasing sequence length. The fact that structural modifications affect the dissociation pathways greatly increases the variety of analytically valuable fragment ions. The gas-phase dissociation of oligonucleotides is characterized by the cleavage of one of the four bonds along the phosphodiester chain, by the accompanying loss of nucleases, and by the generation of internal fragments due to secondary backbone cleavage. For example, an 18-mer oligonucleotide yields a total number of 272’920 theoretical fragment ions. In contrast to the processing of peptide product ion spectra, which nowadays is highly automated, there is a lack of tools assisting the interpretation of oligonucleotide data. The existing web-based and stand-alone software applications are primarily designed for the sequence analysis of natural nucleic acids, but do not account for chemical modifications and adducts. Consequently, we developed a software to support the interpretation of mass spectrometric data of natural and modified nucleic acids and their adducts with chemotherapeutic agents.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.