47 resultados para hierarchical entropy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
INTRODUCTION: Sedative and analgesic drugs are frequently used in critically ill patients. Their overuse may prolong mechanical ventilation and length of stay in the intensive care unit. Guidelines recommend use of sedation protocols that include sedation scores and trials of sedation cessation to minimize drug use. We evaluated processed electroencephalography (response and state entropy and bispectral index) as an adjunct to monitoring effects of commonly used sedative and analgesic drugs and intratracheal suctioning. METHODS: Electrodes for monitoring bispectral index and entropy were placed on the foreheads of 44 critically ill patients requiring mechanical ventilation and who previously had no brain dysfunction. Sedation was targeted individually using the Ramsay Sedation Scale, recorded every 2 hours or more frequently. Use of and indications for sedative and analgesic drugs and intratracheal suctioning were recorded manually and using a camera. At the end of the study, processed electroencephalographical and haemodynamic variables collected before and after each drug application and tracheal suctioning were analyzed. Ramsay score was used for comparison with processed electroencephalography when assessed within 15 minutes of an intervention. RESULTS: The indications for boli of sedative drugs exhibited statistically significant, albeit clinically irrelevant, differences in terms of their association with processed electroencephalographical parameters. Electroencephalographical variables decreased significantly after bolus, but a specific pattern in electroencephalographical variables before drug administration was not identified. The same was true for opiate administration. At both 30 minutes and 2 minutes before intratracheal suctioning, there was no difference in electroencephalographical or clinical signs in patients who had or had not received drugs 10 minutes before suctioning. Among patients who received drugs, electroencephalographical parameters returned to baseline more rapidly. In those cases in which Ramsay score was assessed before the event, processed electroencephalography exhibited high variation. CONCLUSIONS: Unpleasant or painful stimuli and sedative and analgesic drugs are associated with significant changes in processed electroencephalographical parameters. However, clinical indications for drug administration were not reflected by these electroencephalographical parameters, and barely by sedation level before drug administration or tracheal suction. This precludes incorporation of entropy and bispectral index as target variables for sedation and analgesia protocols in critically ill patients.
Resumo:
The performance of memory-guided saccades with two different delays (3 and 30 s of memorization) was studied in seven healthy subjects. Double-pulse transcranial magnetic stimulation (dTMS) with an interstimulus interval of 100 ms was applied over the right dorsolateral prefrontal cortex (DLPFC) early (1 s after target presentation) and late (28 s after target presentation). Early stimulation significantly increased in both delays the percentage of error in amplitude (PEA) of contralateral memory-guided saccades compared to the control experiment without stimulation. dTMS applied late in the delay had no significant effect on PEA. Furthermore, we found a significantly smaller effect of early stimulation in the long-delay paradigm. These results suggest a time-dependent hierarchical organization of the spatial working memory with a functional dominance of DLPFC during the early memorization, independent from the memorization delay. For a long memorization delay, however, working memory seems to have an additional, DLPFC-independent component.