16 resultados para hepatotoxicity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To determine whether pharmacogenetic tests such as N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genotyping are useful in identifying patients prone to antituberculosis drug-induced hepatotoxicity in a cosmopolite population. METHODS: In a prospective study we genotyped 89 patients treated with isoniazid (INH) for latent tuberculosis. INH-induced hepatitis (INH-H) or elevated liver enzymes including hepatitis (INH-ELE) was diagnosed based on the clinical diagnostic scale (CDS) designed for routine clinical practice. NAT2 genotypes were assessed by fluorescence resonance energy transfer probe after PCR analysis, and CYP2E1 genotypes were determined by PCR with restriction fragment length polymorphism analysis. RESULTS: Twenty-six patients (29%) had INH-ELE, while eight (9%) presented with INH-H leading to INH treatment interruption. We report no significant influence of NAT2 polymorphism, but we did find a significant association between the CYP2E1 *1A/*1A genotype and INH-ELE (OR: 3.4; 95% CI:1.1-12; p = 0.02) and a non significant trend for INH-H (OR: 5.9; 95% CI: 0.69-270; p = 0.13) compared with other CYP2E1 genotypes. This test for predicting INH-ELE had a positive predictive value (PPV) of 39% (95% CI: 26-54%) and a negative predictive value (NPV) of 84% (95% CI: 69-94%). CONCLUSION: The genotyping of CYP2E1 polymorphisms may be a useful predictive tool in the common setting of a highly heterogeneous population for predicting isoniazid-induced hepatic toxicity. Larger prospective randomized trials are needed to confirm these results.
Resumo:
BACKGROUND/AIMS: Nutritional supplements are widely used. Recently, liver injury after consumption of Herbalife preparations was reported but the underlying pathogenesis remained cryptic. METHODS: Two patients presented with cholestatic hepatitis and pruritus, and cirrhosis, respectively. Viral, alcoholic, metabolic, autoimmune, neoplastic, vascular liver diseases and synthetic drugs as the precipitating causes of liver injury were excluded. However, both patients reported long-term consumption of Herbalife products. All Herbalife products were tested for contamination with drugs, pesticides, heavy metals, and softeners, and examined for microbial contamination according to standard laboratory procedures. Bacteria isolated from the samples were identified as Bacillus subtilis by sequencing the 16S rRNA and gyrB genes. RESULTS: Causality between consumption of Herbalife products and disease according to CIOMS was scored "probable" in both cases. Histology showed cholestatic and lobular/portal hepatitis with cirrhosis in one patient, and biliary fibrosis with ductopenia in the other. No contamination with chemicals or heavy metals was detected, and immunological testing showed no drug hypersensitivity. However, samples of Herbalife products ingested by both patients showed growth of Bacillus subtilis of which culture supernatants showed dose- and time-dependent hepatotoxicity. CONCLUSIONS: Two novel incidents of severe hepatic injury following intake of Herbalife products contaminated with Bacillus subtilis emphasize its potential hepatotoxicity.
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.
Resumo:
BACKGROUND Eculizumab is a humanized anti-C5 antibody approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use is increasing in children following reports of its safety and efficacy. METHODS We reviewed biochemical and clinical data related to possible drug-induced liver injury in 11 children treated with eculizumab for aHUS in a single center. RESULTS Elevated aminotransferases were observed in 7 children aged 6 to 11 years following eculizumab treatment for aHUS. Internationally accepted liver enzyme thresholds for drug-induced liver injury were exceeded in 5 cases. In all cases, liver injury was classified as mixed hepatocellular and cholestatic. Infectious and other causes were excluded in each case. One patient with no pre-existing liver disease developed tender hepatomegaly and liver enzyme derangement exceeding 20 times the upper limit of normal following initiation of eculizumab. Recurrent liver injury following re-challenge with eculizumab necessitated its discontinuation and transition to plasma therapy. CONCLUSIONS Hepatotoxicity in association with eculizumab is a potentially important yet previously unreported adverse event. We recommend monitoring liver enzymes in all patients receiving eculizumab. Further research is required to clarify the impact of this adverse event, to characterize the mechanism of potential hepatotoxicity, and to identify which patients are most at risk.
Resumo:
Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks.
Resumo:
Dronedarone is a new antiarrhythmic drug with an amiodarone-like benzofuran structure. Shortly after its introduction, dronedarone became implicated in causing severe liver injury. Amiodarone is a well-known mitochondrial toxicant. The aim of our study was to investigate mechanisms of hepatotoxicity of dronedarone in vitro and to compare them with amiodarone. We used isolated rat liver mitochondria, primary human hepatocytes, and the human hepatoma cell line HepG2, which were exposed acutely or up to 24h. After exposure of primary hepatocytes or HepG2 cells for 24h, dronedarone and amiodarone caused cytotoxicity and apoptosis starting at 20 and 50 µM, respectively. The cellular ATP content started to decrease at 20 µM for both drugs, suggesting mitochondrial toxicity. Inhibition of the respiratory chain required concentrations of ~10 µM and was caused by an impairment of complexes I and II for both drugs. In parallel, mitochondrial accumulation of reactive oxygen species (ROS) was observed. In isolated rat liver mitochondria, acute treatment with dronedarone decreased the mitochondrial membrane potential, inhibited complex I, and uncoupled the respiratory chain. Furthermore, in acutely treated rat liver mitochondria and in HepG2 cells exposed for 24h, dronedarone started to inhibit mitochondrial β-oxidation at 10 µM and amiodarone at 20 µM. Similar to amiodarone, dronedarone is an uncoupler and an inhibitor of the mitochondrial respiratory chain and of β-oxidation both acutely and after exposure for 24h. Inhibition of mitochondrial function leads to accumulation of ROS and fatty acids, eventually leading to apoptosis and/or necrosis of hepatocytes. Mitochondrial toxicity may be an explanation for hepatotoxicity of dronedarone in vivo.
Toxicity of clopidogrel and ticlopidine on human myeloid progenitor cells: importance of metabolites
Resumo:
Ticlopidine and clopidogrel are thienopyridine derivatives used for inhibition of platelet aggregation. Not only hepatotoxicity, but also bone marrow toxicity may limit their use. Aims of the study were to find out whether non-metabolized drug and/or metabolites are responsible for myelotoxicity and whether the inactive clopidogrel metabolite clopidogrel carboxylate contributes to myelotoxicity. We used myeloid progenitor cells isolated from human umbilical cord blood in a colony-forming unit assay to assess cytotoxicity. Degradation of clopidogrel, clopidogrel carboxylate or ticlopidine (studied at 10 and 100 μM) was monitored using LC/MS. Clopidogrel and ticlopidine were both dose-dependently cytotoxic starting at 10 μM. This was not the case for the major clopidogrel metabolite clopidogrel carboxylate. Pre-incubation with recombinant human CYP3A4 not only caused degradation of clopidogrel and ticlopidine, but also increased cytotoxicity. In contrast, clopidogrel carboxylate was not metabolized by recombinant human CYP3A4. Pre-incubation with freshly isolated human granulocytes was not only associated with a myeloperoxidase-dependent degradation of clopidogrel, clopidogrel carboxylate and ticlopidine, but also with dose-dependent cytotoxicity of these compounds starting at 10 μM. In conclusion, both non-metabolized clopidogrel and ticlopidine as well as metabolites of these compounds are toxic towards myeloid progenitor cells. Taking exposure data in humans into account, the myelotoxic element of clopidogrel therapy is likely to be secondary to the formation of metabolites from clopidogrel carboxylate by myeloperoxidase. Concerning ticlopidine, both the parent compound and metabolites formed by myeloperoxidase may be myelotoxic in vivo. The molecular mechanisms of cytotoxicity have to be investigated in further studies.
Resumo:
Clopidogrel is a prodrug used widely as a platelet aggregation inhibitor. After intestinal absorption, approximately 90% is converted to inactive clopidogrel carboxylate and 10% via a two-step procedure to the active metabolite containing a mercapto group. Hepatotoxicity is a rare but potentially serious adverse reaction associated with clopidogrel. The aim of this study was to find out the mechanisms and susceptibility factors for clopidogrel-associated hepatotoxicity. In primary human hepatocytes, clopidogrel (10 and 100μM) was cytotoxic only after cytochrome P450 (CYP) induction by rifampicin. Clopidogrel (10 and 100μM) was also toxic for HepG2 cells expressing human CYP3A4 (HepG2/CYP3A4) and HepG2 cells co-incubated with CYP3A4 supersomes (HepG2/CYP3A4 supersome), but not for wild-type HepG2 cells (HepG2/wt). Clopidogrel (100μM) decreased the cellular glutathione content in HepG2/CYP3A4 supersome and triggered an oxidative stress reaction (10 and 100µM) in HepG2/CYP3A4, but not in HepG2/wt. Glutathione depletion significantly increased the cytotoxicity of clopidogrel (10 and 100µM) in HepG2/CYP3A4 supersome. Co-incubation with 1μM ketoconazole or 10mM glutathione almost completely prevented the cytotoxic effect of clopidogrel in HepG2/CYP3A4 and HepG2/CYP3A4 supersome. HepG2/CYP3A4 incubated with 100μM clopidogrel showed mitochondrial damage and cytochrome c release, eventually promoting apoptosis and/or necrosis. In contrast to clopidogrel, clopidogrel carboxylate was not toxic for HepG2/wt or HepG2/CYP3A4 up to 100µM. In conclusion, clopidogrel incubated with CYP3A4 is associated with the formation of metabolites that are toxic for hepatocytes and can be trapped by glutathione. High CYP3A4 activity and low cellular glutathione stores may be risk factors for clopidogrel-associated hepatocellular toxicity.
Resumo:
The aim of this study was to investigate whether a decrease in carnitine body stores is a risk factor for valproic acid (VPA)-associated hepatotoxicity and to explore the effects of VPA on carnitine homeostasis in mice with decreased carnitine body stores. Therefore, heterozygous juvenile visceral steatosis (jvs)(+/-) mice, an animal model with decreased carnitine stores caused by impaired renal reabsorption of carnitine, and the corresponding wild-type mice were treated with subtoxic oral doses of VPA (0.1 g/g b.wt./day) for 2 weeks. In jvs(+/-) mice, but not in wild-type mice, treatment with VPA was associated with the increased plasma activity of aspartate aminotransferase and alkaline phosphatase. Furthermore, jvs(+/-) mice revealed reduced palmitate metabolism assessed in vivo and microvesicular steatosis of the liver. The creatine kinase activity was not affected by treatment with VPA. In liver mitochondria isolated from mice that were treated with VPA, oxidative metabolism of l-glutamate, succinate, and palmitate, as well as beta-oxidation of palmitate, were decreased compared to vehicle-treated wild-type mice or jvs(+/-) mice. In comparison to vehicle-treated wild-type mice, vehicle-treated jvs(+/-) mice had decreased carnitine plasma and tissue levels. Treatment with VPA was associated with an additional decrease in carnitine plasma (wild-type mice and jvs(+/-) mice) and tissue levels (jvs(+/-) mice) and a shift of the carnitine pools toward short-chain acylcarnitines. We conclude that jvs(+/-) mice reveal a more accentuated hepatic toxicity by VPA than the corresponding wild-type mice. Therefore, decreased carnitine body stores can be regarded as a risk factor for hepatotoxicity associated with VPA.
Resumo:
The introduction of cyclosporine A (CyA) into the immunosuppressive therapy has significantly improved the results of heart transplantation (HTX). Its nephrotoxicity and hepatotoxicity, however, often limit the perioperative and postoperative use of this drug. The purpose of this retrospective study was to evaluate the effect of early postoperative CyA blood levels on the incidence of early as well as late cardiac rejection and patients' survival. Between October 1985 and June 1991, HTX was performed in 311 patients. Standard immunosuppression consisted of azathioprine (1-2 mg/kg), prednisolone (0.5 to 0.1 mg/kg) and CyA. Rabbit-antithymocyte-globulin (RATG - 1.5 mg/kg) was administered for the first 4 days postoperatively. Moderate rejection was treated with 3 x 500 mg methylprednisolone, severe rejection with RATG (1.5 mg/kg three times a day). Patients were excluded from this study because of a positive cross-matching, early death unrelated to rejection or alternate forms of immunosuppression (n = 111). Follow-up was complete in 200 patients (mean age 44 +/- 11; 18 female, 182 male; 204,233 patient days) with a total of 5380 biopsies. The cohort was divided into group I (no CyA for day 0 to 2; n = 108) and group II (CyA during day 0 to 2; n = 92) according to the onset of CyA therapy. In 101 patients (group A) the mean CyA blood level was less than 150 ng/ml from day 0 to 14 and in 99 patients more than 150 ng/ml (group B).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.