84 resultados para hepatic and muscle glucose
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27 h of faecal peritonitis and to a control condition (n = 9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6 ± 5.3 (placebo) vs. 5.4 ± 4.6 (norepinephrine) in controls and 2.7 ± 2.1 (placebo) vs. 2.9 ± 1.5 (norepinephrine) in septic animals; RCR complex II: 3.5 ± 2.0 (placebo) vs. 3.5 ± 1.8 (norepinephrine) in controls; 2.3 ± 1.6 (placebo) vs. 2.2 ± 1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.
Resumo:
Context There is contradictory information regarding the prognostic importance of adipocytokines, hepatic and inflammatory biomarkers on the incidence of type 2 diabetes. The objective was to assess the prognostic relevance of adipocytokine and inflammatory markers (C-reactive protein – CRP; interleukin-1beta – IL-1β; interleukin-6– IL-6; tumour necrosis factor-α – TNF-α; leptin and adiponectin) and gamma-glutamyl transpeptidase (γGT) on the incidence of type 2 diabetes. Methods Prospective, population-based study including 3,842 non-diabetic participants (43.3% men, age range 35 to 75 years), followed for an average of 5.5 years (2003–2008). The endpoint was the occurrence of type 2 diabetes. Results 208 participants (5.4%, 66 women) developed type 2 diabetes during follow-up. On univariate analysis, participants who developed type 2 diabetes had significantly higher baseline levels of IL-6, CRP, leptin and γGT, and lower levels of adiponectin than participants who remained free of type 2 diabetes. After adjusting for a validated type 2 diabetes risk score, only the associations with adiponectin: Odds Ratio and (95% confidence interval): 0.97 (0.64–1.47), 0.84 (0.55–1.30) and 0.64 (0.40–1.03) for the second, third and forth gender-specific quartiles respectively, remained significant (P-value for trend = 0.05). Adding each marker to a validated type 2 diabetes risk score (including age, family history of type 2 diabetes, height, waist circumference, resting heart rate, presence of hypertension, HDL cholesterol, triglycerides, fasting glucose and serum uric acid) did not improve the area under the ROC or the net reclassification index; similar findings were obtained when the markers were combined, when the markers were used as continuous (log-transformed) variables or when gender-specific quartiles were used. Conclusion Decreased adiponectin levels are associated with an increased risk for incident type 2 diabetes, but they seem to add little information regarding the risk of developing type 2 diabetes to a validated risk score.
Resumo:
Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.
Resumo:
Glycogen levels in liver and skeletal muscle assessed non-invasively using magnetic resonance spectroscopy after a 48-h pre-study period including a standardized diet and withdrawal from exercise did not differ between individuals with well-controlled Type 1 DM and matched healthy controls.
Resumo:
The optimal timing of primary and metastatic tumor management in patients with synchronous hepatic colorectal metastases remains controversial. We aimed to compare perioperative outcomes of simultaneous colorectal/liver resection (SCLR) with isolated resections utilizing a national clinical database.
Resumo:
OBJECTIVE: To describe the advantages and surgical technique of a trochanteric flip osteotomy in combination with a Kocher-Langenbeck approach for the treatment of selected acetabular fractures. DESIGN: Consecutive series, teaching hospital. METHODS: Through mobilization of the vastus lateralis muscle, a slice of the greater trochanter with the attached gluteus medius muscle can be flipped anteriorly. The gluteus minimus muscle can then be easily mobilized, giving free access to the posterosuperior and superior acetabular wall area. Damage to the abductor muscles by vigorous retraction can be avoided, potentially resulting in less ectopic ossification. Ten consecutive cases of acetabular fractures treated with this approach are reported. In eight cases, an anatomic reduction was achieved; in the remaining two cases with severe comminution, the reduction was within one to three millimeters. The trochanteric fragment was fixed with two 3.5-millimeter cortical screws. RESULTS: All osteotomies healed in anatomic position within six to eight weeks postoperatively. Abductor strength was symmetric in eight patients and mildly reduced in two patients. Heterotopic ossification was limited to Brooker classes 1 and 2 without functional impairment at an average follow-up of twenty months. No femoral head necrosis was observed. CONCLUSION: This technique allows better visualization, more accurate reduction, and easier fixation of cranial acetabular fragments. Cranial migration of the greater trochanter after fixation with two screws is unlikely to occur because of the distal pull of the vastus lateralis muscle, balancing the cranial pull of the gluteus medius muscle.
Resumo:
Larger body parts are somatotopically represented in the primary motor cortex (M1), while smaller body parts, such as the fingers, have partially overlapping representations. The principles that govern the overlapping organization of M1 remain unclear. We used transcranial magnetic stimulation (TMS) to examine the cortical encoding of thumb movements in M1 of healthy humans. We performed M1 mapping of the probability of inducing a thumb movement in a particular direction and used low intensity TMS to disturb a voluntary thumb movement in the same direction during a reaction time task. With both techniques we found spatially segregated representations of the direction of TMS-induced thumb movements, thumb flexion and extension being best separated. Furthermore, the cortical regions corresponding to activation of a thumb muscle differ, depending on whether the muscle functions as agonist or as antagonist for flexion or extension. In addition, we found in the reaction time experiment that the direction of a movement is processed in M1 before the muscles participating in it are activated. It thus appears that one of the organizing principles for the human corticospinal motor system is based on a spatially segregated representation of movement directions and that the representation of individual somatic structures, such as the hand muscles, overlap.
Resumo:
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.
Resumo:
OBJECTIVE: To investigate adaptive changes in bone and muscle parameters in the paralysed limbs after detraining or reduced functional electrical stimulation (FES) induced cycling following high-volume FES-cycling in chronic spinal cord injury. SUBJECTS: Five subjects with motor-sensory complete spinal cord injury (age 38.6 years, lesion duration 11.4 years) were included. Four subjects stopped FES-cycling completely after the training phase whereas one continued reduced FES-cycling (2-3 times/week, for 30 min). METHODS: Bone and muscle parameters were assessed in the legs using peripheral quantitative computed tomography at 6 and 12 months after cessation of high-volume FES-cycling. RESULTS: Gains achieved in the distal femur by high-volume FES-cycling were partly maintained at one year of detraining: 73.0% in trabecular bone mineral density, 63.8% in total bone mineral density, 59.4% in bone mineral content and 22.1% in muscle cross-sectional area in the thigh. The subject who continued reduced FES-cycling maintained 96.2% and 95.0% of the previous gain in total and trabecular bone mineral density, and 98.5% in muscle cross-sectional area. CONCLUSION: Bone and muscle benefits achieved by one year of high-volume FES-cycling are partly preserved after 12 months of detraining, whereas reduced cycling maintains bone and muscle mass gained. This suggests that high-volume FES-cycling has clinical relevance for at least one year after detraining.