40 resultados para heart muscle contractility
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.
Resumo:
Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.
Resumo:
In horses, gastrointestinal (GI) disorders occur frequently and cause a considerable demand for efficient medication. 5-Hydroxytryptamine receptors (5-HT) have been reported to be involved in GI tract motility and thus, are potential targets for treating functional bowel disorders. Our studies extend current knowledge on the 5-HT(7) receptor in equine duodenum, ileum and pelvic flexure by studying its expression throughout the intestine and its role in modulating contractility in vitro by immunofluorescence and organ bath experiments, respectively. 5-HT(7) immunoreactivity was demonstrated in both smooth muscle layers, particularly in the circular one, and within the myenteric plexus. Interstitial cells of Cajal (ICC), identified by c-Kit labeling, show a staining pattern similar to that of 5-HT(7) immunoreactivity. The selective 5-HT(7) receptor antagonist SB-269970 increased the amplitude of contractions in spontaneous contracting specimens of the ileum and in electrical field-stimulated specimens of the pelvic flexure concentration-dependently. Our in vitro experiments suggest an involvement of the 5-HT(7) receptor subtype in contractility of equine intestine. While the 5-HT(7) receptor has been established to be constitutively active and inhibits smooth muscle contractility, our experiments demonstrate an increase in contractility by the 5-HT(7) receptor ligand SB-269970, suggesting it exerting inverse agonist properties.
Resumo:
CRF has powerful receptor-mediated cardiovascular actions. To evaluate the precise distribution of CRF receptors, in vitro CRF receptor autoradiography with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine or [(125)I]-antisauvagine-30 was performed in the rodent and human cardiovascular system. An extremely high density of CRF(2) receptors was detected with both tracers in vessels of rodent lung, intestine, pancreas, mesenterium, kidney, urinary bladder, testis, heart, brain, and in heart muscle. In humans, CRF(2) receptors were detected with (125)I- antisauvagine-30 at low levels in vessels of kidneys, intestine, urinary bladder, testis, heart and in heart muscle, while only heart vessels were detected with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine. This is the first extensive morphological study reporting the extremely wide distribution of CRF(2) receptors in the rodent cardiovascular system and a more limited expression in man, suggesting a species-selective CRF receptor expression.
Resumo:
After 75 years of invasive and over 50 years of interventional cardiology, cardiac catheter-based procedures have become the most frequently used interventions of modern medicine. Patients undergoing a percutaneous coronary intervention (PCI) outnumber those with coronary artery bypass surgery by a factor of 2 to 4. The default approach to PCI is the implantation of a (drug-eluting) stent, in spite of the fact that it improves the results of balloon angioplasty only in about 25% of cases. The dominance of stenting over conservative therapy or balloon angioplasty on one hand and bypass surgery on the other hand is a flagrant example of how medical research is digested an applied in real life. Apart from electrophysiological interventions, closure ot the patent foramen ovale and percutaneous replacement of the aortic valve in the elderly have the potential of becoming daily routine procedures in catheterization laboratories around the world. Stem cell regeneration of vessels or heart muscle, on the other hand, may remain a dream never to come true.
Resumo:
Bovine dilated cardiomyopathy (BDCMP) is a severe and terminal disease of the heart muscle observed in Holstein-Friesian cattle over the last 30 years. There is strong evidence for an autosomal recessive mode of inheritance for BDCMP. The objective of this study was to genetically map BDCMP, with the ultimate goal of identifying the causative mutation. A whole-genome scan using 199 microsatellite markers and one SNP revealed an assignment of BDCMP to BTA18. Fine-mapping on BTA18 refined the candidate region to the MSBDCMP06-BMS2785 interval. The interval containing the BDCMP locus was confirmed by multipoint linkage analysis using the software loki. The interval is about 6.7 Mb on the bovine genome sequence (Btau 3.1). The corresponding region of HSA19 is very gene-rich and contains roughly 200 genes. Although telomeric of the marker interval, TNNI3 is a possible positional and a functional candidate for BDCMP given its involvement in a human form of dilated cardiomyopathy. Sequence analysis of TNNI3 in cattle revealed no mutation in the coding sequence, but there was a G-to-A transition in intron 6 (AJ842179:c.378+315G>A). The analysis of this SNP using the study's BDCMP pedigree did not conclusively exclude TNNI3 as a candidate gene for BDCMP. Considering the high density of genes on the homologous region of HSA19, further refinement of the interval on BTA18 containing the BDCMP locus is needed.
Resumo:
Cardiomyopathies are myocardial diseases that lead to cardiac dysfunction, heart failure, arrhythmia, and sudden death. In human medicine, cardiomyopathies frequently warrant heart transplantation in children and adults. Bovine dilated cardiomyopathy (BDCMP) is a heart muscle disorder that has been observed during the last 30 years in cattle of Holstein-Friesian origin. In Switzerland BDCMP affects Swiss Fleckvieh and Red Holstein breeds. BDCMP is characterized by a cardiac enlargement with ventricular remodeling and chamber dilatation. The common symptoms in affected animals are subacute subcutaneous edema, congestion of the jugular veins, and tachycardia with gallop rhythm. A cardiomegaly with dilatation and hypertrophy of all heart chambers, myocardial degeneration, and fibrosis are typical postmortem findings. It was shown that all BDCMP cases reported worldwide traced back to a red factor-carrying Holstein-Friesian bull, ABC Reflection Sovereign. An autosomal recessive mode of inheritance was proposed for BDCMP. Recently, the disease locus was mapped to a 6.7-Mb interval MSBDCMP06-BMS2785 on bovine Chr 18 (BTA18). In the present study the BDCMP locus was fine mapped by using a combined strategy of homozygosity mapping and association study. A BAC contig of 2.9 Mb encompassing the crucial interval was constructed to establish the correct marker order on BTA18. We show that the disease locus is located in a gene-rich interval of 1.0 Mb and is flanked by the microsatellite markers DIK3006 and MSBDCMP51.
Resumo:
Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.
Resumo:
INTRODUCTION Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. METHODS Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). RESULTS Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. CONCLUSIONS Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.
Resumo:
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.
Resumo:
Tissue engineering represents an attractive approach for the treatment of congestive heart failure. The influence of the differentiation of myogenic graft for functional recovery is not defined. We engineered a biodegradable skeletal muscle graft (ESMG) tissue and investigated its functional effect after implantation on the epicardium of an infarcted heart segment. ESMGs were synthesized by mixing collagen (2 mg/mL), Matrigel (2 mg/mL), and rat skeletal muscle cells (10(6)). Qualitative and quantitative aspects of ESMGs were optimized. Two weeks following coronary ligation, the animals were randomized in three groups: ESMG glued to the epicardial surface with fibrin (ESMG, n = 7), fibrin alone (fibrin, n = 5), or sham operation (sham, n = 4). Echocardiography, histology, and immunostaining were performed 4 weeks later. A cohesive three-dimensional tissular structure formed in vitro within 1 week. Myoblasts differentiated into randomly oriented myotubes. Four weeks postimplantation, ESMGs were vascularized and invaded by granulation tissue. Mean fractional shortening (FS) was, however, significantly increased in the ESMG group as compared with preimplantation values (42 +/- 6 vs. 33 +/- 5%, P < 0.05) and reached the values of controlled noninfarcted animals (control, n = 5; 45 +/- 3%; not significant). Pre- and postimplantation FS did not change over these 4 weeks in the sham group and the fibrin-treated animals. This study showed that it is possible to improve systolic heart function following myocardial infarction through implantation of differentiated muscle fibers seeded on a gel-type scaffold despite a low rate of survival.
Resumo:
BACKGROUND: Muscular counterpulsation (MCP) was developed for circulatory assistance by stimulation of peripheral skeletal muscles. We report on a clinical MCP study in patients with and without chronic heart failure (CHF). METHODS AND RESULTS: MCP treatment was applied (30 patients treated, 25 controls, all under optimal therapy) for 30 minutes during eight days by an ECG-triggered, battery-powered, portable pulse generator with skin electrodes inducing light contractions of calf and thigh muscles, sequentially stimulated at early diastole. Hemodynamic parameters (ECG, blood pressure and echocardiography) were measured one day before and one day after the treatment period in two groups: Group 1 (9 MCP, 11 no MCP) with ejection fraction (EF) above 40% and Group 2 (21 MCP, 14 no MCP) below 40%. In Group 2 (all patients suffering from CHF) mean EF increased by 21% (p<0.001) and stroke volume by 13% (p<0.001), while end systolic volume decreased by 23% (p<0.001). In Group 1, the increase in EF (6%) and stroke volume (8%) was also significant (p<0.05) but less pronounced than in Group 2. Physical exercise duration and walking distance increased in Group 2 by 56% and 72%, respectively. CONCLUSIONS: Noninvasive MCP treatment for eight days substantially improves cardiac function and physical performance in patients with CHF.
Resumo:
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is remarkably common in elderly people with highly prevalent comorbid conditions. Despite its increasing in prevalence, there is no evidence-based effective therapy for HFpEF. We sought to evaluate whether inspiratory muscle training (IMT) improves exercise capacity, as well as left ventricular diastolic function, biomarker profile and quality of life (QoL) in patients with advanced HFpEF and nonreduced maximal inspiratory pressure (MIP). DESIGN AND METHODS A total of 26 patients with HFpEF (median (interquartile range) age, peak exercise oxygen uptake (peak VO2) and left ventricular ejection fraction of 73 years (66-76), 10 ml/min/kg (7.6-10.5) and 72% (65-77), respectively) were randomized to receive a 12-week programme of IMT plus standard care vs. standard care alone. The primary endpoint of the study was evaluated by positive changes in cardiopulmonary exercise parameters and distance walked in 6 minutes (6MWT). Secondary endpoints were changes in QoL, echocardiogram parameters of diastolic function, and prognostic biomarkers. RESULTS The IMT group improved significantly their MIP (p < 0.001), peak VO2 (p < 0.001), exercise oxygen uptake at anaerobic threshold (p = 0.001), ventilatory efficiency (p = 0.007), metabolic equivalents (p < 0,001), 6MWT (p < 0.001), and QoL (p = 0.037) as compared to the control group. No changes on diastolic function parameters or biomarkers levels were observed between both groups. CONCLUSIONS In HFpEF patients with low aerobic capacity and non-reduced MIP, IMT was associated with marked improvement in exercise capacity and QoL.
Resumo:
AIMS Vent-HeFT is a multicentre randomized trial designed to investigate the potential additive benefits of inspiratory muscle training (IMT) on aerobic training (AT) in patients with chronic heart failure (CHF). METHODS AND RESULTS Forty-three CHF patients with a mean age of 58 ± 12 years, peak oxygen consumption (peak VO2 ) 17.9 ± 5 mL/kg/min, and LVEF 29.5 ± 5% were randomized to an AT/IMT group (n = 21) or to an AT/SHAM group (n = 22) in a 12-week exercise programme. AT involved 45 min of ergometer training at 70-80% of maximum heart rate, three times a week for both groups. In the AT/IMT group, IMT was performed at 60% of sustained maximal inspiratory pressure (SPImax ) while in the AT/SHAM group it was performed at 10% of SPImax , using a computer biofeedback trainer for 30 min, three times a week. At baseline and at 3 months, patients were evaluated for exercise capacity, lung function, inspiratory muscle strength (PImax ) and work capacity (SPImax ), quality of life (QoL), LVEF and LV diameter, dyspnoea, C-reactive protein (CRP), and NT-proBNP. IMT resulted in a significantly higher benefit in SPImax (P = 0.02), QoL (P = 0.002), dyspnoea (P = 0.004), CRP (P = 0.03), and NT-proBNP (P = 0.004). In both AT/IMT and AT/SHAM groups PImax (P < 0.001, P = 0.02), peak VO2 (P = 0.008, P = 0.04), and LVEF (P = 0.005, P = 0.002) improved significantly; however, without an additional benefit for either of the groups. CONCLUSION This randomized multicentre study demonstrates that IMT combined with aerobic training provides additional benefits in functional and serum biomarkers in patients with moderate CHF. These findings advocate for application of IMT in cardiac rehabilitation programmes.