10 resultados para haptic gripper

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive documentation methods such as surface scanning and radiological imaging are gaining in importance in the forensic field. These three-dimensional technologies provide digital 3D data, which are processed and handled in the computer. However, the sense of touch gets lost using the virtual approach. The haptic device enables the use of the sense of touch to handle and feel digital 3D data. The multifunctional application of a haptic device for forensic approaches is evaluated and illustrated in three different cases: the representation of bone fractures of the lower extremities, by traffic accidents, in a non-invasive manner; the comparison of bone injuries with the presumed injury-inflicting instrument; and in a gunshot case, the identification of the gun by the muzzle imprint, and the reconstruction of the holding position of the gun. The 3D models of the bones are generated from the Computed Tomography (CT) images. The 3D models of the exterior injuries, the injury-inflicting tools and the bone injuries, where a higher resolution is necessary, are created by the optical surface scan. The haptic device is used in combination with the software FreeForm Modelling Plus for touching the surface of the 3D models to feel the minute injuries and the surface of tools, to reposition displaced bone parts and to compare an injury-causing instrument with an injury. The repositioning of 3D models in a reconstruction is easier, faster and more precisely executed by means of using the sense of touch and with the user-friendly movement in the 3D space. For representation purposes, the fracture lines of bones are coloured. This work demonstrates that the haptic device is a suitable and efficient application in forensic science. The haptic device offers a new way in the handling of digital data in the virtual 3D space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Acetabular fractures still are among the most challenging fractures to treat because of complex anatomy, involved surgical access to fracture sites and the relatively low incidence of these lesions. Proper evaluation and surgical planning is necessary to achieve anatomic reduction of the articular surface and stable fixation of the pelvic ring. The goal of this study was to test the feasibility of preoperative surgical planning in acetabular fractures using a new prototype planning tool based on an interactive virtual reality-style environment. Methods 7 patients (5 male and 2 female; median age 53 y (25 to 92 y)) with an acetabular fracture were prospectively included. Exclusion criterions were simple wall fractures, cases with anticipated surgical dislocation of the femoral head for joint debridement and accurate fracture reduction. According to the Letournel classification 4 cases had two column fractures, 2 cases had anterior column fractures and 1 case had a T-shaped fracture including a posterior wall fracture. The workflow included following steps: (1) Formation of a patient-specific bone model from preoperative computed tomography scans, (2) interactive virtual fracture reduction with visuo-haptic feedback, (3) virtual fracture fixation using common osteosynthesis implants and (4) measurement of implant position relative to landmarks. The surgeon manually contoured osteosynthesis plates preoperatively according to the virtually defined deformation. Screenshots including all measurements for the OR were available. The tool was validated comparing the preoperative planning and postoperative results by 3D-superimposition. Results Preoperative planning was feasible in all cases. In 6 of 7 cases superimposition of preoperative planning and postoperative follow-up CT showed a good to excellent correlation. In one case part of the procedure had to be changed due to impossibility of fracture reduction from an ilioinguinal approach. In 3 cases with osteopenic bone patient-specific prebent fixation plates were helpful in guiding fracture reduction. Additionally, anatomical landmark based measurements were helpful for intraoperative navigation. Conclusion The presented prototype planning tool for pelvic surgery was successfully integrated in a clinical workflow to improve patient-specific preoperative planning, giving visual and haptic information about the injury and allowing a patient-specific adaptation of osteosynthesis implants to the virtually reduced pelvis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In severe forms of ocular surface disorders keratoprostheses provide the ultimate possibility to restore vision. They are made of an optical cylinder integrated with a supporting biocompatible or biological haptic. CASE REPORT: We report on two patients with different types of keratoprostheses. An 88-year-old woman with ocular pemphigoid received in 1970 a bilateral osteo-odonto-keratoprosthesis (Strampelli). A 59-year-old man with refractory corneal ulcer after corneal grafting received in 2003 a keratoprosthesis with supporting Dacron tissue (Pintucci). RESULTS: The course 35 years after implantation of the osteo-odonto-keratoprosthesis was uneventful. Histologically there were no signs of loosening, rejection or infection. The autologous dentin, which was used for the fixation, was still present. The eye with the Dacron fixated prosthesis (Pintucci) had to be enucleated due to a loosening with endophthalmitis one and a half year after implantation. CONCLUSIONS: Keratoprostheses with autologous fixation often show good long-term results. On the other hand, prostheses with synthetic material are more often complicated by dislocation and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. METHODS: Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. RESULTS: We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. CONCLUSION: PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To report the incidence of anterior capsule contraction syndrome (ACCS) and to present a novel minimally invasive bimanual technique for anterior segment revision surgery associated with ACCS with anterior flexion of the intraocular lens haptics. METHODS A consecutive cohort of 268 eyes of 161 patients undergoing phacoemulsification and implantation of the same type of hydrophilic acrylic aspheric intraocular lens cohort were analysed and a novel technique of minimally invasive bimanual technique for anterior segment revision surgery is described. RESULTS We identified four eyes (1.5%) of three patients with advanced ACCS. Successful restoration of a clear visual axis with minimal induction of astigmatism and rapid visual rehabilitation was achieved in all four cases. CONCLUSION This technique is a safe and minimally invasive alternative to laser or vitrector-cut capsulotomy to restore a clear visual axis. In cases of advanced ACCS, it offers the option for haptic reposition or amputation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient's motivation and activity and, therefore, the therapeutic progress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early intervention and intensive therapy improve the outcome of neuromuscular rehabilitation. There are indications that where a patient is motivated and premeditates their movement, the recovery is more effective. Therefore, a strategy for patient-cooperative control of rehabilitation devices for upper extremities is proposed and evaluated. The strategy is based on the minimal intervention principle allowing an efficient exploitation of task space redundancies and resulting in user-driven movement trajectories. The patient's effort is taken into consideration by enabling the machine to comply with forces exerted by the user. The interaction is enhanced through a multimodal display and a virtually generated environment that includes haptic, visual and sound modalities.