9 resultados para haploinsufficiency
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys-Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers-Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3,408,306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.
Resumo:
Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.
Resumo:
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Resumo:
OBJECTIVE: Marfan syndrome is a systemic connective tissue disorder caused by mutations in the fibrillin-1 gene. It was originally believed that Marfan syndrome results exclusively from the production of abnormal fibrillin-1 that leads to structurally weaker connective tissue when incorporated into the extracellular matrix. This effect seemed to explain many of the clinical features of Marfan syndrome, including aortic root dilatation and acute aortic dissection, which represent the main causes of morbidity and mortality in Marfan syndrome. METHODS: Recent molecular studies, most based on genetically defined mouse models of Marfan syndrome, have challenged this paradigm. These studies established the critical contribution of fibrillin-1 haploinsufficiency and dysregulated transforming growth factor-beta signaling to disease progression. RESULTS: It seems that many manifestations of Marfan syndrome are less related to a primary structural deficiency of the tissues than to altered morphogenetic and homeostatic programs that are induced by altered transforming growth factor-beta signaling. Most important, transforming growth factor-beta antagonism, through transforming growth factor-beta neutralizing antibodies or losartan (an angiotensin II type 1 receptor antagonist), has been shown to prevent and possibly reverse aortic root dilatation, mitral valve prolapse, lung disease, and skeletal muscle dysfunction in a mouse model of Marfan syndrome. CONCLUSION: There are indicators that losartan, a drug widely used to treat arterial hypertension in humans, offers the first potential for primary prevention of clinical manifestations in Marfan syndrome.
Resumo:
The aim of the present study was to identify the molecular mechanism behind ventricular tachycardia in a patient with Brugada syndrome. Arrhythmias in patients with Brugada syndrome often occur during sleep. However, a 28-year-old man with no previously documented arrhythmia or syncope who experienced shortness of breath and chest pain during agitation is described. An electrocardiogram revealed monomorphic ventricular tachycardia; after he was converted to nodal rhythm, he spontaneously went into sinus rhythm, and showed classic Brugada changes with coved ST elevation in leads V(1) to V(2). Mutation analysis of SCN5A revealed a novel mutation, 3480 deletion T frame shift mutation, resulting in premature truncation of the protein. Heterologous expression of this truncated protein in human embryonic kidney 293 cells showed a markedly reduced protein expression level. By performing whole-cell patch clamp experiments using human embryonic kidney 293 cells transfected with the mutated SCN5A, no current could be recorded. Hence, the results suggest that the patient suffered from haploinsufficiency of Na(v)1.5, and that this mutation was the cause of his Brugada syndrome.
Resumo:
Congenital distal renal tubular acidosis (dRTA) from mutations of the B1 subunit of the V-ATPase is considered an autosomal recessive disease. We analyzed a dRTA kindred with a truncation-mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of the V-ATPase. All heterozygous carriers in this kindred have normal plasma bicarbonate concentrations, thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria are present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also have inappropriate urinary acidification with acute ammonium chloride loading and impaired urine-blood pCO2 gradient during bicarbonaturia indicating presence of H+ gradient and flux defects. In normal human renal papillae, wild type B1 is located primarily on the plasma membrane but papilla from one of the heterozygote who had kidney stones had renal tissue secured from surgery showed B1 in both plasma membrane as well as a diffuse intracellular staining. Titrating increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+-pump activity of the wild type B1 in mammalian HEK293 cells and in V-ATPase-deficient S. cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of mutant B1 subunit; which cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Resumo:
Mutations in MITF lead to a large variety of phenotypes in human, mice and other species. They mostly affect pigmentation and hearing, whereas in mice, they may additionally cause microphthalmia and osteopetrosis. In this study, we report a single case of a Holstein calf with lack of pigmentation and microphthalmia born to healthy parents. Mendelian analysis of high-density SNP genotypes reveals a large number of parentage errors showing missing paternal alleles in the offspring, indicating a deletion encompassing 19 Mb on BTA 22. The genomic deletion affects the paternal allele and includes MITF and 131 other annotated genes. As the calf shows only one copy of the BTA 22 segment, the observed phenotype is probably caused by haploinsufficiency of the genes in that genomic region. Both the observed lack of skin pigmentation and reduced eye size can most likely be explained by a lack of MITF function.
Resumo:
We report two patients with microdeletions in chromosomal subdomain 15q26.1 encompassing only two genes, CHD2 and RGMA. Both patients present a distinct phenotype with intellectual disability, epilepsy, behavioral issues, truncal obesity, scoliosis and facial dysmorphism. CHD2 haploinsufficiency is known to cause intellectual disability and epilepsy, RGMA haploinsufficiency might explain truncal obesity with onset around puberty observed in our two patients.
Resumo:
Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities, and subdivided in TRPS I, caused by mutations in TRPS1, and TRPS II, caused by a contiguous gene deletion affecting (amongst others) TRPS1 and EXT1. We performed a collaborative international study to delineate phenotype, natural history, variability, and genotype-phenotype correlations in more detail. We gathered information on 103 cytogenetically or molecularly confirmed affected individuals. TRPS I was present in 85 individuals (22 missense mutations, 62 other mutations), TRPS II in 14, and in 5 it remained uncertain whether TRPS1 was partially or completely deleted. Main features defining the facial phenotype include fine and sparse hair, thick and broad eyebrows, especially the medial portion, a broad nasal ridge and tip, underdeveloped nasal alae, and a broad columella. The facial manifestations in patients with TRPS I and TRPS II do not show a significant difference. In the limbs the main findings are short hands and feet, hypermobility, and a tendency for isolated metacarpals and metatarsals to be shortened. Nails of fingers and toes are typically thin and dystrophic. The radiological hallmark are the cone-shaped epiphyses and in TRPS II multiple exostoses. Osteopenia is common in both, as is reduced linear growth, both prenatally and postnatally. Variability for all findings, also within a single family, can be marked. Morbidity mostly concerns joint problems, manifesting in increased or decreased mobility, pain and in a minority an increased fracture rate. The hips can be markedly affected at a (very) young age. Intellectual disability is uncommon in TRPS I and, if present, usually mild. In TRPS II intellectual disability is present in most but not all, and again typically mild to moderate in severity. Missense mutations are located exclusively in exon 6 and 7 of TRPS1. Other mutations are located anywhere in exons 4-7. Whole gene deletions are common but have variable breakpoints. Most of the phenotype in patients with TRPS II is explained by the deletion of TRPS1 and EXT1, but haploinsufficiency of RAD21 is also likely to contribute. Genotype-phenotype studies showed that mutations located in exon 6 may have somewhat more pronounced facial characteristics and more marked shortening of hands and feet compared to mutations located elsewhere in TRPS1, but numbers are too small to allow firm conclusions.