5 resultados para gypsum

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloride and sulfate concentration profiles in a 260 m thick clay-rich Mesozoic sediment sequence have been analyzed by various methods. Chloride data generally indicate a good consistency between different methods if anion exclusion is accounted for in leaching tests. For sulfate, however, there is an apparent inconsistency between leaching data and those obtained from the other methods, which points to the dissolution of a sulfur-bearing mineral. Traces of diagenetic gypsum seem to be a likely source, but other sulfur minerals cannot be ruled out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bentonite and iron metals are common materials proposed for use in deep-seated geological repositories for radioactive waste. The inevitable corrosion of iron leads to interaction processes with the clay which may affect the sealing properties of the bentonite backfill. The objective of the present study was to improve our understanding of this process by studying the interface between iron and compacted bentonite in a geological repository-type setting. Samples of MX-80 bentonite samples which had been exposed to an iron source and elevated temperatures (up to 115ºC) for 2.5 y in an in situ experiment (termed ABM1) at the Äspö Hard Rock Laboratory, Sweden, were investigated by microscopic means, including scanning electron microscopy, μ-Raman spectroscopy, spatially resolved X-ray diffraction, and X-ray fluorescence. The corrosion process led to the formation of a ~100 mm thick corrosion layer containing siderite, magnetite, some goethite, and lepidocrocite mixed with the montmorillonitic clay. Most of the corroded Fe occurred within a 10 mm-thick clay layer adjacent to the corrosion layer. An average corrosion depth of the steel of 22–35 μm and an average Fe2+ diffusivity of 1–26×10–13 m2/s were estimated based on the properties of the Fe-enriched clay layer. In that layer, the corrosion-derived Fe occurred predominantly in the clay matrix. The nature of this Fe could not be identified. No indications of clay transformation or newly formed clay phases were found. A slight enrichment of Mg close to the Fe–clay contact was observed. The formation of anhydrite and gypsum, and the dissolution of some SiO2 resulting from the temperature gradient in the in situ test, were also identified. © 2014, Clay Minerals Society. All right reserved.