29 resultados para growth cycle

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hair follicle has a lifelong capacity to cycle through recurrent phases of controlled growth (anagen), regression (catagen) and quiescence (telogen), each associated with specific morphological changes. A comprehensive classification scheme is available for mice to distinguish the cycle stages anagen I-VI, catagen I-VIII and telogen. For dogs, such a classification system does not exist, although alopecia associated with hair cycle arrest is common. We applied analogous morphological criteria and various staining techniques to subdivide the canine hair cycle stages to the same extent as has been done in mice. Of all the staining techniques applied, haematoxylin and eosin stain, Sacpic, Masson Fontana and immunohistochemistry for vimentin and laminin proved to be most useful. To evaluate the applicability of our criteria, we investigated skin biopsies from healthy beagle dogs (n=20; biopsies from shoulder and thigh) kept in controlled conditions. From each biopsy, at least 50 hair follicles were assessed. Statistical analysis revealed that 30% of the follicles were in anagen (12% early and 18% late), 8% in catagen (2% early, 5% late and 1% not determinable) and 27% in telogen. Thirty-five per cent of hair follicles could not be assigned to a specific cycle stage because not all follicles within one biopsy were oriented perfectly. In conclusion, this guide will not only be helpful for the investigation of alopecic disorders and possibly their pathogenesis, but may also serve as a basis for research projects in which the comparison of hair cycle stages is essential, e.g. comparative analysis of gene expression patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Throughout follicular growth and subsequent corpus luteum formation the leukocyte number increases and follicular vascularisation changes. These processes are enhanced under exogenous stimulation with gonadotropins. Cytokines released by leukocytes contribute to further recruitment and vascularisation of the follicle, and they play an important role in regulating ovarian steroidogenesis by influencing theca and granulosa–lutein cell function. Changes in cytokine and vascular endothelial growth factor (VEGF) concentrations in the ovary as a consequence of gonadotropin stimulation may negatively influence oocyte quality. In this project we have compared the intrafollicular production of inflammatory cytokines and growth factors between natural IVF cycles (NC) and classical, gonadotropin-stimulated IVF cycles (gsIVF). Material and Methods: Serum on the day of oocyte retrieval and follicular fluid (FF) were collected in 37 NC and 39 gsIVF cycles. Thirteen women within this population underwent one NC and one gsIVF cycle each. A total of 14 cytokines from Bio-Plex panels I and II were determined in matched serum and FF samples using Luminex xMAP technology on the Bio-Plex(R) platform, using the serum protocol. Results: Tumour necrosis factor-alpha, RANTES, eotaxin and interferon-gamma-induced protein-10 levels were lower in FF than in serum, and thus not further investigated. Interleukin (IL)-6, -8, -10, -15, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median concentrations in FF than in serum, indicating possible ovarian production. Moreover, most of these showed higher evels in the gsIVF than in the NC groups in the serum, but not in the follicular fluid. IL-8 was reduced in gsIVF cycles. Conclusion: The fact that serum but not FF levels of the studied cytokines were higher in the stimulated than in the natural cycles can be attributed to the increased number of active follicles present after controlled ovarian stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: During each oestrous cycle, the mammary gland is subject to changes in ovarian hormone levels. It responds with limited proliferation, differentiation and regression. To understand the processes resulting in these changes, particularly the regulation of cell death, we examined protein levels in mammary epithelium during the oestrous cycle of the Sprague-Dawley rat. METHODS: Studies of serum hormone levels, vaginal smears, uterine weight and morphology, mammary gland morphology, proliferation and apoptotic indices, and protein levels during the stages of the Sprague-Dawley rat oestrous cycle were used to examine the response of mammary epithelium to the oestrous cycle. RESULTS: Proliferation of mammary epithelium was greater in diestrus and proestrus, while apoptosis was increased in metestrus and diestrus. Growth factor-, hormone- and anchorage-mediated cell survival signalling, indicated by activation of Stat5A, FAK and Akt 1 and expression of anti-apoptotic Bcl-2 family members, was greater in proestrus and reduced in metestrus. In contrast, the levels of pro-apoptotic Bcl-2 family members and proteins associated with apoptosis in mammary epithelium (TGFbeta3, pStat3) were increased during metestrus and diestrus. CONCLUSION: Decreases in growth factor, hormone and cell attachment survival signals corresponded with increased apoptosis during the second half of the oestrous cycle. The protein levels detected during oestrus suggest parallels to apoptosis in mammary involution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. METHODS: To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). RESULTS: siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. CONCLUSION: In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day-night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down-regulation of OsPTR9 in a T-DNA insertion line (osptr9) and in OsPTR9-RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear