20 resultados para granular computing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial.
Resumo:
BACKGROUND: The aim of the study is to clinically and histologically evaluate the healing of advanced intrabony defects treated with open flap debridement and the adjunct implantation of granular beta tricalcium phosphate (beta-TCP). METHODS: Five patients, each displaying advanced combined 1- and 2-wall intrabony defects around teeth scheduled for extraction or root resection, were recruited. Approximately 6 months after surgery, the teeth or roots were removed together with a portion of their surrounding soft and hard tissues and processed for histologic evaluation. RESULTS: The mean probing depth (PD) was reduced from 10.8 +/- 2.3 mm presurgically to 4.6 +/- 2.1 mm, whereas a mean clinical attachment level (CAL) gain of 5.0 +/- 0.7 mm was observed. The increase in gingival recession was 1.2 +/- 3.2 mm. The histologic evaluation indicated the formation of new cellular cementum with inserting collagen fibers to a varying extent (mean: 1.9 +/- 0.7 mm; range: 1.2 to 3.03 mm) coronal to the most apical extent of the root instrumentation. The mean new bone formation was 1.0 +/- 0.7 mm (range: 0.0 to 1.9 mm). In most specimens, beta-TCP particles were embedded in the connective tissue, whereas the formation of a mineralized bone-like or cementum-like tissue around the particles was only occasionally observed. CONCLUSION: The present data indicates that treatment of intrabony periodontal defects with this beta-TCP may result in substantial clinical improvements such as PD reduction and CAL gain, but this beta-TCP does not seem to enhance the regeneration of cementum, periodontal ligament, and bone.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
The descriptive term hybrid peripheral nerve sheath tumor refers to any neoplasm of the neurilemmal apparatus composed of more than one pathologically defined tumoral equivalent derived from its constituent cells. Within this uncommon nosological category, participation of granular cell tumor - a neoplasm of modified Schwann cells - has been reported only exceptionally. We describe a hitherto not documented variant composed of an organoid mixture of granular cell tumor and perineurioma with plexiform growth. A solitary subcutaneous nodule of 1.5 cm diameter was excised from the right ring finger of a 19-year-old female with no antecedents of neurofibromatosis or relevant trauma. Histology revealed a monotonous, yet cytologically dimorphic proliferation of classical granular cells intermingled with flattened, inconspicuous perineurial cells. Immunohistochemical double labeling detected expression of S100 protein in the former and of EMA and GLUT-1 in the latter. While the respective staining patterns for S100 protein and EMA or GLUT-1 tended to be mutually exclusive, a minority of cells exhibited transitional granular cell/perineurial immunophenotype. Electron microscopy permitted direct visualization of a plethora of lysosomes in the granular cell moiety, and of pinocytotic vesicles and tight junctions in perineurial cells. Intratumoral axons were not detected. Expanding intraneurally, the lesion showed discrete encapsulation by the local perineurium, and resulted in plexiform growth. The MIB-1 labeling index averaged 1%. We interpret our findings as supporting evidence for the dual cell lineage to have arisen through metaplasia, with the tumor's dynamics probably having been driven by the granular cell component.