9 resultados para gradually truncated power law distributions

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clays and claystones are used as backfill and barrier materials in the design of waste repositories, because they act as hydraulic barriers and retain contaminants. Transport through such barriers occurs mainly by molecular diffusion. There is thus an interest to relate the diffusion properties of clays to their structural properties. In previous work, we have developed a concept for up-scaling pore-scale molecular diffusion coefficients using a grid-based model for the sample pore structure. Here we present an operational algorithm which can generate such model pore structures of polymineral materials. The obtained pore maps match the rock’s mineralogical components and its macroscopic properties such as porosity, grain and pore size distributions. Representative ensembles of grains in 2D or 3D are created by a lattice Monte Carlo (MC) method, which minimizes the interfacial energy of grains starting from an initial grain distribution. Pores are generated at grain boundaries and/or within grains. The method is general and allows to generate anisotropic structures with grains of approximately predetermined shapes, or with mixtures of different grain types. A specific focus of this study was on the simulation of clay-like materials. The generated clay pore maps were then used to derive upscaled effective diffusion coefficients for non-sorbing tracers using a homogenization technique. The large number of generated maps allowed to check the relations between micro-structural features of clays and their effective transport parameters, as is required to explain and extrapolate experimental diffusion results. As examples, we present a set of 2D and 3D simulations and investigated the effects of nanopores within particles (interlayer pores) and micropores between particles. Archie’s simple power law is followed in systems with only micropores. When nanopores are present, additional parameters are required; the data reveal that effective diffusion coefficients could be described by a sum of two power functions, related to the micro- and nanoporosity. We further used the model to investigate the relationships between particle orientation and effective transport properties of the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P /Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims. We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results. The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km(2) talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of 4.0 + 0.3/0.4, which is correlated with gravitational events triggered by sublimation and /or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at lambda(1) = 480.7 nm and 7.4% at lambda(2) = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.