77 resultados para glutamate decarboxylase

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of conformationally constrained aspartate and glutamate analogues inhibit the glutamate transporter 1 (GLT-1, also known as EAAT2). To expand the search for such analogues, a virtual library of aliphatic aspartate and glutamate analogues was generated starting from the chemical universe database GDB-11, which contains 26.4 million possible molecules up to 11 atoms of C, N, O, F, resulting in 101026 aspartate analogues and 151285 glutamate analogues. Virtual screening was realized by high-throughput docking to the glutamate binding site of the glutamate transporter homologue from Pyrococcus horikoshii (PDB code: 1XFH ) using Autodock. Norbornane-type aspartate analogues were selected from the top-scoring virtual hits and synthesized. Testing and optimization led to the identification of (1R*,2R*,3S*,4R*,6R*)-2-amino-6-phenethyl-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid as a new inhibitor of GLT-1 with IC(50) = 1.4 ?M against GLT-1 and no inhibition of the related transporter EAAC1. The systematic diversification of known ligands by enumeration with help of GDB followed by virtual screening, synthesis, and testing as exemplified here provides a general strategy for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmann's area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and preclinical evidence suggests a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for novel therapeutic approaches to depression. The goal of this study was to compare mGluR5 binding (in a positron emission tomography [PET] study) and mGluR5 protein expression (in a postmortem study) between individuals with major depressive disorder and psychiatrically healthy comparison subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glutamate transporters GLT-1 and GLAST are widely expressed in astrocytes in the brain where they fulfill important functions during glutamatergic neurotransmission. The present study examines their distribution in peripheral organs using in situ hybridization (ISH) and immunocytochemistry. GLAST was found to be more widely distributed than GLT-1. GLAST was expressed primarily in epithelial cells, cells of the macrophage-lineage, lymphocytes, fat cells, interstitial cells, and salivary gland acini. GLT-1 was primarily expressed in glandular tissue, including mammary gland, lacrimal gland, and ducts and acini in salivary glands, but also by perivenous hepatocytes and follicular dendritic cells in spleen and lymph nodes. The findings demonstrate that, although expressed by the same cells in the brain, these two glutamate transporters have different distribution patterns in peripheral tissues and that they fulfill glutamate transport functions apart from glutamatergic neurotransmission in these areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies could demonstrate, that the naturally occuring polyphenol resveratrol inhibits cell growth of colon carcinoma cells at least in part by inhibition of protooncogene ornithine decarboxylase (ODC). The objective of this study was to provide several lines of evidence suggesting that the induction of ceramide synthesis is involved in this regulatory mechanisms. Cell growth was determined by BrdU incorporation and crystal violet staining. Ceramide concentrations were detected by HPLC-coupled mass-spectrometry. Protein levels were examined by Western blot analysis. ODC activity was assayed radiometrically measuring [(14)CO(2)]-liberation. A dominant-negative PPARgamma mutant was transfected in Caco-2 cells to suppress PPARgamma-mediated functions. Antiproliferative effects of resveratrol closely correlate with a dose-dependent increase of endogenous ceramides (p<0.001). Compared to controls the cell-permeable ceramide analogues C2- and C6-ceramide significantly inhibit ODC-activity (p<0.001) in colorectal cancer cells. C6-ceramide further diminished protein levels of protooncogenes c-myc (p<0.05) and ODC (p<0.01), which is strictly related to the ability of ceramides to inhibit cell growth in a time- and dose-dependent manner. These results were further confirmed using inhibitors of sphingolipid metabolism, where only co-incubation with a serine palmitoyltransferase (SPT) inhibitor could significantly counteract resveratrol-mediated actions. These data suggest that the induction of ceramide de novo biosynthesis but not hydrolysis of sphingomyelin is involved in resveratrol-mediated inhibition of ODC. In contrast to the regulation of catabolic spermidine/spermine acetyltransferase by resveratrol, inhibitory effects on ODC occur PPARgamma-independently, indicating independent pathways of resveratrol-action. Due to our findings resveratrol could show great chemopreventive and therapeutic potential in the treatment of colorectal cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obsessive-compulsive disorder (OCD) is a disabling, mostly chronic, psychiatric condition with significant social and economic impairments and is a major public health issue. However, numerous patients are resistant to currently available pharmacological and psychological interventions. Given that recent animal studies and magnetic resonance spectroscopy research points to glutamate dysfunction in OCD, we investigated the metabotropic glutamate receptor 5 (mGluR5) in patients with OCD and healthy controls. We determined mGluR5 distribution volume ratio (DVR) in the brain of ten patients with OCD and ten healthy controls by using [11C]ABP688 positron-emission tomography. As a clinical measure of OCD severity, the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was employed. We found no significant global difference in mGluR5 DVR between patients with OCD and healthy controls. We did, however, observe significant positive correlations between the Y-BOCS obsession sub-score and mGluR5 DVR in the cortico-striatal-thalamo-cortical brain circuit, including regions of the amygdala, anterior cingulate cortex, and medial orbitofrontal cortex (Spearman's ρ's⩾ = 0.68, p < 0.05). These results suggest that obsessions in particular might have an underlying glutamatergic pathology related to mGluR5. The research indicates that the development of metabotropic glutamate agents would be useful as a new treatment for OCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable wakefulness requires orexin/hypocretin neurons (OHNs) and OHR2 receptors. OHNs sense diverse environmental cues and control arousal accordingly. For unknown reasons, OHNs contain multiple excitatory transmitters, including OH peptides and glutamate. To analyze their cotransmission within computational frameworks for control, we optogenetically stimulated OHNs and examined resulting outputs (spike patterns) in a downstream arousal regulator, the histamine neurons (HANs). OHR2s were essential for sustained HAN outputs. OHR2-dependent HAN output increased linearly during constant OHN input, suggesting that the OHN→HAN(OHR2) module may function as an integral controller. OHN stimulation evoked OHR2-dependent slow postsynaptic currents, similar to midnanomolar OH concentrations. Conversely, glutamate-dependent output transiently communicated OHN input onset, peaking rapidly then decaying alongside OHN→HAN glutamate currents. Blocking glutamate-driven spiking did not affect OH-driven spiking and vice versa, suggesting isolation (low cross-modulation) of outputs. Therefore, in arousal regulators, cotransmitters may translate distinct features of OHN activity into parallel, nonredundant control signals for downstream effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reelin is an extracellular matrix glycoprotein expressed in different nerve cell populations in the developing, early postnatal and adult central nervous system. During histogenesis of the neocortex and hippocampus, reelin is present in Cajal-Retzius cells and other early neurons and contributes to correct layering of these regions. During early postnatal life, pioneer neurons disappear and reelin expression establishes in a subpopulation of cortical and hippocampal GABAergic interneurons, where it is maintained throughout adult life. We studied the developmental distribution pattern of reelin in dissociated cultures obtained from the early postnatal hippocampus to verify whether or not such a maturation phenomenon is maintained in vitro. Reelin is expressed both in Cajal-Retzius cells and multipolar and pyramidal neurons in younger cultures. The density of reelin-positive Cajal-Retzius cells dropped drastically by about 84% in 4-week-old cultures. Multipolar and pyramidal neurons containing reelin represented 12% of the total cell population in younger cultures and decreased by about 25% after 3 to 4 weeks of cultivation. Their density was significantly lower in cultures of the same age treated with glutamate receptor antagonists. These reelin-positive multipolar and pyramidal neurons were heterogeneous, including a larger amount of non-GABAergic, and 30-40% of GABAergic neurons. Cells double labeled for reelin and the GABA synthesizing enzyme glutamic acid decarboxylase represented about 4% of the total neuron population in culture and their density remained constant with age. It is thus possible that the decrease in the total reelin population may selectively be of importance to the larger non-GABAergic fraction of reelin cells. This study shows that reelin-expressing neurons are maintained in dissociated cultures of the neonatal hippocampus and their distribution and age-dependent changes in density resemble those of the early postnatal hippocampus in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Nicotine addiction is a major public health problem and is associated with primary glutamatergic dysfunction. We recently showed marked global reductions in metabotropic glutamate receptor type 5 (mGluR5) binding in smokers and recent ex-smokers (average abstinence duration of 25 weeks). The goal of this study was to examine the role of mGluR5 downregulation in nicotine addiction by investigating a group of long-term ex-smokers (abstinence >1.5 years), and to explore associations between mGluR5 binding and relapse in recent ex-smokers. METHODS Images of mGluR5 receptor binding were acquired in 14 long-term ex-smokers, using positron emission tomography with radiolabeled [11C]ABP688, which binds to an allosteric site with high specificity. RESULTS Long-term ex-smokers and individuals who had never smoked showed no differences in mGluR5 binding in any of the brain regions examined. Long-term ex-smokers showed significantly higher mGluR5 binding than recent ex-smokers, most prominently in the frontal cortex (42%) and thalamus (57%). CONCLUSIONS Our findings suggest that downregulation of mGluR5 is a pathogenetic mechanism underlying nicotine dependence and the high relapse rate in individuals previously exposed to nicotine. Therefore, mGluR5 receptor binding appears to be an effective biomarker in smoking and a promising target for the discovery of novel medication for nicotine dependence and other substance-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.