24 resultados para glucose photocatalysis selective oxidation titania gold silver nanoparticles

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Nanoparticulate silver coatings for orthopaedic implants promise to decrease postoperative infection rates. However, silver-induced cytotoxicity on bone cells has not been investigated in detail. This study investigated the cytotoxic effects of silver nano- and microparticles and Ag(+) on osteoblasts (OBs) and osteoclasts (OCs) and correlated their effects with the antibacterial efficacy on Staphylococcus epidermidis. Silver nanoparticles (50 nm) exhibited strong cytotoxic effects on OBs and OCs. Weak cytotoxic effects were observed for silver microparticles (3 μm). The cytotoxicity was primarily mediated by a size-dependent release of Ag(+). Antibacterial effects occurred at Ag(+) concentrations that were 2-4 times higher than those inducing cytotoxic effects. Such adverse effects on OB and OC survival may have deleterious effects on the biocompatibility of orthopaedic implants. Our study represents an important step toward the detailed investigation of orthopaedic implant with nanoparticulate silver coatings prior to their widespread clinical usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm2 respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. RESULTS: Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-alpha and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-alpha and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. CONCLUSIONS: With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag-NPs do not cause adverse effects and cells were only sensitive to high Ag-ion concentrations. Chronic exposure scenarios however, are needed to reveal further insight into the fate of Ag-NPs after deposition and cell interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview--for biologists, chemists, toxicologists as well as physicists--regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source. Lack of AgNP interference with the cytotoxicity assays (AlamarBlue, CFDA-AM, NRU assay) and their simultaneous application point to the compatibility and usefulness of such a battery of assays. The RTH-149 and RTL-W1 liver cell lines exhibited similar sensitivity as primary hepatocytes towards AgNP toxicity. Leibovitz's L-15 culture medium composition (high amino acid content) had an important influence on the behaviour and toxicity of AgNPs towards the RTL-W1 cell line. The obtained results demonstrate that, with careful consideration, such an in vitro approach can provide valuable toxicological data to be used in an integrated testing strategy for NM-300K risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake of silica (Si) and gold (Au) nanoparticles (NPs) engineered for laser-tissue soldering in the brain was investigated using microglial cells and undifferentiated and differentiated SH-SY5Y cells. It is not known what effects NPs elicit once entering the brain. Cellular uptake, cytotoxicity, apoptosis, and the potential induction of oxidative stress by means of depletion of glutathione levels were determined after NP exposure at concentrations of 10(3) and 10(9)NPs/ml. Au-, silica poly (ε-caprolactone) (Si-PCL-) and silica poly-L-lactide (Si-PLLA)-NPs were taken up by all cells investigated. Aggregates and single NPs were found in membrane-surrounded vacuoles and the cytoplasm, but not in the nucleus. Both NP concentrations investigated did not result in cytotoxicity or apoptosis, but reduced glutathione (GSH) levels predominantly at 6 and 24h, but not after 12 h of NP exposure in the microglial cells. NP exposure-induced GSH depletion was concentration-dependent in both cell lines. Si-PCL-NPs induced the strongest effect of GSH depletion followed by Si-PLLA-NPs and Au-NPs. NP size seems to be an important characteristic for this effect. Overall, Au-NPs are most promising for laser-assisted vascular soldering in the brain. Further studies are necessary to further evaluate possible effects of these NPs in neuronal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.

Relevância:

40.00% 40.00%

Publicador: