143 resultados para glacial advance

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we document glacial deposits and reconstruct the glacial history in the Karagöl valley system in the eastern Uludağ in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 ± 1.2 ka and at least three re-advances until 18.6 ± 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 ± 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagöl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Our study in the Başyayla Valley in northeastern Anatolia showed evidence of four glacier advances that built terminal and lateral moraines. Surface exposure dating of boulders on these moraines showed that the Maximum Ice Extent (MIE) was asynchronous with the global Last Glacial Maximum (LGM; 22.1 ± 4.3 thousand years; ka). The local {MIE} took place at least 57.0 ± 3.5 ka ago. The extent of the Başyayla Glacier during this advance is not known exactly because the boulders are only preserved on a lateral moraine. The next advance was prior to 41.5 ± 2.5 ka, and it descended down the valley to approximately 2320 m above sea level (m a.s.l.), with a glacier length of 5.3 km. During the early global LGM, the Başyayla Glacier extended for a distance of 4.9 km down to approx. 2430 m a.s.l. The last recorded advance occurred during the global LGM. This extension was 0.7 km smaller than the local {MIE} and its terminus reached 2490 m a.s.l. only. The exposure ages of boulders in a retreat position at an altitude of approx. 3045 m a.s.l. indicate that the valley has remained ice-free since the Lateglacial period. Therefore, the Lateglacial extent was limited to the cirque system in the uppermost part of the catchment. Furthermore, Holocene glacier oscillations seem to be either absent or restricted to solifluction in the whole catchment and to rock glacier movements in the southern tributary of the Başyayla Valley system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.