57 resultados para geomorphology

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Bolivian Amazon several paleochannel generations are preserved. Their wide spectrum of morphologies clearly provides crucial information on the type and magnitude of geomorphic and hydrological changes within the drainage network of the Andean foreland. Therefore, in this study we mapped geomorphological characteristics of paleochannels, and applied radiocarbon and optically stimulated luminescence dating. Seven paleochannel generations are identified. Significant changes in sinuosity, channel widths and river pattern are observed for the successive paleochannel generations. Our results clearly reflect at least three different geomorphic and hydrological periods in the evolution of the fluvial system since the late Pleistocene. Changes in discharge and sediment load may be controlled by combinations of two interrelated mechanisms: (i) spatial changes and re-organizations of the drainage network in the upper catchment, and/or (ii) climate changes with their associated local to catchment-scale modifications in vegetation cover, and changes in discharge, inundation frequencies and magnitudes, which have likely affected the evolution of the fluvial system in the Llanos de Moxos. In summary, our study has revealed the enormous potential which geomorphic mapping and analysis combined with luminescence based chronologies hold for the reconstruction of the late Pleistocene to recent fluvial system in a large portion of Amazonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multi-disciplinary two-step approach to assess the potential for seismic hazard of the Aare valley and perialpine Lake Thun (Switzerland). High-resolution seismic images and multibeam-bathymetric data, complemented by field observations represent the tools to identify potentially active seismogenic fault structures. Several second-order earthquake effects such as subaqueous mass movements, seismites and liquefaction structures have been observed in Lake Thun and ultimately document the seismic activity of the study area. A first investigation of possibly first-order active structures is presented in the scope of this study. Recently acquired bathymetric data in Lake Thun reveal significant morphologic depressions aligning with an observed lineament on land. Furthermore, high-resolution seismic images indicate potential fault structures in Lake Thun. However, their continuation with depth has to be verified with a multichannel seismic campaign, scheduled for March 2015.