27 resultados para genetic linkage map
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.
Resumo:
Most flowering plants depend on animal vectors for pollination and seed dispersal. Differential pollinator preferences lead to premating isolation and thus reduced gene flow between interbreeding plant populations [1, 2, 3 and 4]. Sets of floral traits, adapted to attract specific pollinator guilds, are called pollination syndromes [5]. Shifts in pollination syndromes have occurred surprisingly frequently [6], considering that they must involve coordinated changes in multiple genes affecting multiple floral traits. Although the identification of individual genes specifying single pollination syndrome traits is in progress in many species, little is known about the genetic architecture of coadapted pollination syndrome traits and how they are embedded within the genome [7]. Here we describe the tight genetic linkage of loci specifying five major pollination syndrome traits in the genus Petunia: visible color, UV absorption, floral scent production, pistil length, and stamen length. Comparison with other Solanaceae indicates that, in P. exserta and P. axillaris, loci specifying these floral traits have specifically become clustered into a multifunctional “speciation island” [ 8 and 9]. Such an arrangement promotes linkage disequilibrium and avoids the dissolution of pollination syndromes by recombination. We suggest that tight genetic linkage provides a mechanism for rapid switches between distinct pollination syndromes in response to changes in pollinator availabilities.
Resumo:
A collection of 77 Staphylococcus intermedius isolates from dogs and cats in Switzerland was examined for resistance to erythromycin. Resistance profiles for 14 additional antibiotics were compared between erythromycin-resistant and susceptible isolates. A resistance prevalence of 27% for erythromycin was observed in the population under study. Complete correlation between resistance to erythromycin, and to spiramycin, streptomycin, and neomycin was observed. The erythromycin-resistant isolates all had a reduced susceptibility to clindamycin when compared to the erythromycin-susceptible isolates. Both constitutive and inducible resistance phenotypes were observed for clindamycin. Ribotyping showed that macrolide-aminoglycoside resistance was randomly distributed among unrelated strains. This suggests that this particular resistance profile is not related to a single bacterial clone but to the horizontal transfer of resistance gene clusters in S. intermedius populations. The erythromycin-resistant isolates were all carrying erm(B), but not erm(A), erm(C), or msr(A). The erm(B) gene was physically linked to Tn5405-like elements known as resistance determinants for streptomycin, streptothricin, neomycin and kanamycin. Analysis of the region flanking erm(B) showed the presence of two different groups of erm(B)-Tn5405-like elements in the S. intermedius population examined and of elements found in Gram-positive species other than staphylococci. This strongly suggests that erm(B) or the whole erm(B)-Tn5405-like elements in S. intermedius originate from other bacterial species, possibly from enterococci.
Resumo:
Congenital syndactyly with a variable number of affected feet was observed in eight black and white German Holstein calves. Analysis of the pedigree data revealed that all affected individuals could be traced back to a single founder. The pedigree was consistent with monogenic autosomal recessive inheritance and variable expressivity. Bovine syndactyly or "mulefoot" has been previously shown to map on the telomeric end of bovine chromosome 15 and we performed PCR genotyping of microsatellite markers spanning 27 cM of this chromosomal region to test the new cases for genetic linkage with the phenotype. The haplotype segregation confirmed the suggested inheritance pattern of the mulefoot mutation in this family and markers RM004, BM848 and BMS820 showed significant linkage to the phenotype. The results confirmed the chromosomal location of the mulefoot gene in this pedigree. Furthermore the study demonstrated that although marker testing has been available for nearly a decade the use of mulefoot carriers in cattle breeding remains uncontrolled. The presented family provides a resource for positional cloning of the causative mutation.
Resumo:
Sexual selection by female mating preference for male nuptial coloration has been suggested as a driving force in the rapid speciation of Lake Victoria cichlid fish. This process could have been facilitated or accelerated by genetic associations between female preference loci and male coloration loci. Preferences, as well as coloration, are heritable traits and are probably determined by more than one gene. However, little is known about potential genetic associations between these traits. In turbid water, we found a population that is variable in male nuptial coloration from blue to yellow to red. Males at the extreme ends of the phenotype distribution resemble a reproductively isolated species pair in clear water that has diverged into one species with blue-grey mates and one species with bright red males. Females of the turbid water population vary in mating preference coinciding with the male phenotype distribution. For the current study, these females were mated to blue males. We measured the coloration of the sires and male offspring. Parents-offspring regression showed that the sires did not affect male offspring coloration, which confirms earlier findings that the blue species breeds true. In contrast, male offspring coloration was determined by the identity of the dams, which suggests that there is heritable variation in male color genes between females. However, we found that mating preferences of the dams were not correlated with male offspring coloration. Thus, there is no evidence for strong genetic linkage between mating preference and the preferred trait in this population [Current Zoology 56 (1): 57-64 2010].
Resumo:
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Resumo:
Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.
Resumo:
BACKGROUND: Recurrent airway obstruction (RAO) is a severe chronic respiratory disease affecting horses worldwide, though mostly in the Northern hemisphere. Environmental as well as genetic factors strongly influence the course and prognosis of the disease. Research has been focused on characterization of immunologic factors contributing to inflammatory responses, on genetic linkage analysis, and, more recently, on proteomic analysis of airway secretions from affected horses. The goal of this study was to investigate the interactions between eight candidate genes previously identified in a genetic linkage study and proteins expressed in bronchoalveolar lavage fluid (BALF) collected from healthy and RAO-affected horses. The analysis was carried out with Ingenuity Pathway Analysis(R) bioinformatics software. RESULTS: The gene with the greatest number of indirect interactions with the set of proteins identified is Interleukin 4 Receptor (IL-4R), whose protein has also been detected in BALF. Interleukin 21 receptor and chemokine (C-C motif) ligand 24 also showed a large number of interactions with the group of detected proteins. Protein products of other genes like that of SOCS5, revealed direct interactions with the IL-4R protein. The interacting proteins NOD2, RPS6KA5 and FOXP3 found in several pathways are reported regulators of the NFkappaB pathway. CONCLUSIONS: The pathways generated with IL-4R highlight possible important intracellular signaling cascades implicating, for instance, NFkappaB. Furthermore, the proposed interaction between SOCS5 and IL-4R could explain how different genes can lead to identical clinical RAO phenotypes, as observed in two Swiss Warmblood half sibling families because these proteins interact upstream of an important cascade where they may act as a functional unit.
Resumo:
BACKGROUND: Chronic alcohol consumption is a risk factor for colorectal cancer. Animal experiments as well as genetic linkage studies in Japanese individuals with inactive acetaldehyde dehydrogenase leading to elevated acetaldehyde concentrations following ethanol ingestion support the hypothesis that acetaldehyde may be responsible for this carcinogenic effect of alcohol. In Caucasians, a polymorphism of alcohol dehydrogenase 1C (ADH1C) exists resulting in different acetaldehyde concentrations following ethanol oxidation. METHODS: To evaluate whether the association between alcohol consumption and colorectal tumor development is modified by ADH1C polymorphism, we recruited 173 individuals with colorectal tumors diagnosed by colonoscopy and 788 control individuals without colorectal tumors. Genotyping was performed using genomic DNA extracted from whole blood followed by polymerase chain reaction. RESULTS: Genotype ADH1C*1/1 was more frequent in patients with alcohol-associated colorectal neoplasia compared to patients without cancers in the multivariate model controlling for age, gender, and alcohol intake (odds ratio = 1.674, 95% confidence interval = 1.110-2.524, 2-sided p from Wald test = 0.0139). In addition, the joint test of the genetic effect and interaction between ADH1C genotype and alcohol intake (2-sided p = 0.0007) indicated that the difference in ADH1C*1 polymorphisms between controls and colorectal neoplasia is strongly influenced by the alcohol consumption and that only individuals drinking more than 30 g ethanol per day with the genotype ADH1C*1/1 had an increased risk for colorectal tumors. CONCLUSIONS: These data identify ADH1C homozygosity as a genetic risk marker for colorectal tumors in individuals consuming more than 30 g alcohol per day and emphasize the role of acetaldehyde as a carcinogenic agent in alcohol-related colorectal carcinogenesis.
Resumo:
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.
Resumo:
PURPOSE: To characterize the phenotype and map the locus responsible for autosomal recessive inherited ovine microphthalmia (OMO) in sheep. METHODS: Microphthalmia-affected lambs and their available relatives were collected in a field, and experimental matings were performed to obtain affected and normal lambs for detailed necropsy and histologic examinations. The matings resulted in 18 sheep families with 48 cases of microphthalmia. A comparative candidate gene approach was used to map the disease locus within the sheep genome. Initially, 27 loci responsible for the microphthalmia-anophthalmia phenotypes in humans or mice were selected to test for comparative linkage. Fifty flanking markers that were predicted from comparative genomic analysis to be closely linked to these genes were tested for linkage to the disease locus. After observation of statistical evidence for linkage, a confirmatory fine mapping strategy was applied by further genotyping of 43 microsatellites. RESULTS: The clinical and pathologic examinations showed slightly variable expressivity of isolated bilateral microphthalmia. The anterior eye chamber was small or absent, and a white mass admixed with cystic spaces extended from the papilla to the anterior eye chamber, while no recognizable vitreous body or lens was found within the affected eyes. Significant linkage to a single candidate region was identified at sheep chromosome 23. Fine mapping and haplotype analysis assigned the candidate region to a critical interval of 12.4 cM. This ovine chromosome segment encompasses an ancestral chromosomal breakpoint corresponding to two orthologue segments of human chromosomes 18, short and long arms. For the examined animals, we excluded the complete coding region and adjacent intronic regions of ovine TGIF1 to harbor disease-causing mutations. CONCLUSIONS: This is the first genetic localization for hereditary ovine isolated microphthalmia. It seems unlikely that a mutation in the TGIF1 gene is responsible for this disorder. The studied sheep represent a valuable large animal model for similar human ocular phenotypes.
Resumo:
As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4 protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family.
Resumo:
Effective population size is an important parameter for the assessment of genetic diversity within a livestock population and its development over time. If pedigree information is not available, linkage disequilibrium (LD) analysis might offer an alternative perspective for the estimation of effective population size. In this study, 128 individuals of the Swiss Eringer breed were genotyped using the Illumina BovineSNP50 beadchip. We set bin size at 50 kb for LD analysis, assuming that LD for proximal single nucleotide polymorphism (SNP)-pairs reflects distant breeding history while LD from distal SNP-pairs would reflect near history. Recombination rates varied among different regions of the genome. The use of physical distances as an approximation of genetic distances (e.g. setting 1 Mb = 0.01 Morgan) led to an upward bias in LD-based estimates of effective population size for generations beyond 50, while estimates for recent history were unaffected. Correction for restricted sample size did not substantially affect these results. LD-based actual effective population size was estimated in the range of 87-149, whereas pedigree-based effective population size resulted in 321 individuals. For conservation purposes, requiring knowledge of recent history (<50 generations), approximation assuming constant recombination rate seemed adequate.
Resumo:
BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.
Resumo:
Chronic alcohol consumption is a major cause of liver cirrhosis which, however, develops in only a minority of heavy drinkers. Evidence from twin studies indicates that genetic factors account for at least 50% of individual susceptibility. The contribution of genetic factors to the development of diseases may be investigated either by means of animal experiments, through linkage studies in families of affected patients, or population based case-control studies. With regard to the latter, single nucleotide polymorphisms of genes involved in the degradation of alcohol, antioxidant defense, necroinflammation, and formation and degradation of extracellular matrix are attractive candidates for studying genotype-phenotype associations. However, many associations in early studies were found to be spurious and could not be confirmed in stringently designed investigations. Therefore, future genotype-phenotype studies in alcoholic liver disease should meet certain requirements in order to avoid pure chance observations due to a lack of power, false functional interpretation, and insufficient statistical evaluation.