66 resultados para genetic background
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.
Resumo:
OBJECTIVES: Recently, a genome-wide association study showed that single-nucleotide polymorphisms (SNPs) in the chromosome 4q27 region containing IL2 and IL21 are associated with celiac disease. Given the increased prevalence of inflammatory bowel disease (IBD) among celiac disease patients, we investigated the possible involvement of these SNPs in IBD. METHODS: Five SNPs strongly associated with celiac disease within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block on chromosome 4q27 and one coding SNP within the IL21 gene were analyzed in a large German IBD cohort. The study population comprised a total of 2,948 Caucasian individuals, including 1,461 IBD patients (ulcerative colitis (UC): n=514, Crohn's disease (CD): n=947) and 1,487 healthy unrelated controls. RESULTS: Three of the five celiac disease risk markers had a protective effect on UC susceptibility, and this effect remained significant after correcting for multiple testing: rs6840978: P=0.0082, P(corr)=0.049, odds ratio (OR) 0.77, 95% confidence interval (CI) 0.63-0.93; rs6822844: P=0.0028, P(corr)=0.017, OR 0.73, 95% CI 0.59-0.90; rs13119723: P=0.0058, P(corr)=0.035, OR 0.75, 95% CI 0.61-0.92. A haplotype consisting of the six SNPs tested was markedly associated with UC susceptibility (P=0.0025, P(corr)=0.015, OR 0.72, 95% CI 0.58-0.89). Moreover, in UC, epistasis was observed between the IL23R SNP rs1004819 and three SNPs in the KIAA1109/TENR/IL2/IL21 block (rs13151961, rs13119723, and rs6822844). CONCLUSIONS: Similar to other autoimmune diseases such as celiac disease, rheumatoid arthritis, type 1 diabetes, Graves' disease, and psoriatic arthritis, genetic variation in the chromosome 4q27 region predisposes to UC, suggesting a common genetic background for these diseases.
Resumo:
Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Resumo:
The Brugada syndrome (BrS) is an inherited arrhythmia characterized by ST-segment elevation in V1-V3 leads and negative T wave on standard ECG. BrS patients are at risk of sudden cardiac death (SCD) due to ventricular tachyarrhythmia. At least 17 genes have been proposed to be linked to BrS, although recent findings suggested a polygenic background. Mutations in SCN5A, the gene coding for the cardiac sodium channel Nav1.5, have been found in 15-30% of index cases. Here, we present the results of clinical, genetic, and expression studies of a large Iranian family with BrS carrying a novel genetic variant (p.P1506S) in SCN5A. By performing whole-cell patch-clamp experiments using HEK293 cells expressing wild-type (WT) or p.P1506S Nav1.5 channels, hyperpolarizing shift of the availability curve, depolarizing shift of the activation curve, and hastening of the fast inactivation process were observed. These mutant-induced alterations lead to a loss of function of Nav1.5 and thus suggest that the p.P1506S variant is pathogenic. In addition, cascade familial screening found a family member with BrS who did not carry the p.P1506S mutation. Additional next generation sequencing analyses revealed the p.R25W mutation in KCNH2 gene in SCN5A-negative BrS patients. These findings illustrate the complex genetic background of BrS found in this family and the possible pathogenic role of a new SCN5A genetic variant.
Resumo:
Background. The impact of human genetic background on low-trauma fracture (LTF) risk has not been evaluated in the context of human immunodeficiency virus (HIV) and clinical LTF risk factors. Methods. In the general population, 6 common single-nucleotide polymorphisms (SNPs) associate with LTF through genome-wide association study. Using genome-wide SNP arrays and imputation, we genotyped these SNPs in HIV-positive, white Swiss HIV Cohort Study participants. We included 103 individuals with a first, physician-validated LTF and 206 controls matched on gender, whose duration of observation and whose antiretroviral therapy start dates were similar using incidence density sampling. Analyses of nongenetic LTF risk factors were based on 158 cases and 788 controls. Results. A genetic risk score built from the 6 LTF-associated SNPs did not associate with LTF risk, in both models including and not including parental hip fracture history. The contribution of clinical LTF risk factors was limited in our dataset. Conclusions. Genetic LTF markers with a modest effect size in the general population do not improve fracture prediction in persons with HIV, in whom clinical LTF risk factors are prevalent in both cases and controls.
Resumo:
A recent study showed increased resistance against strongylid nematodes in offspring of a stallion affected by recurrent airway obstruction (RAG) compared with unrelated pasture mates. Resistance against strongylid nematodes was associated with RAG affection. Hypothesis: Resistance against strongylid nematodes has a genetic basis. The genetic variants influencing strongylid resistance also influence RAG susceptibility. Faecal samples from the half-sibling offspring of two RAG-affected Warmblood stallions 98 offspring from the first family (family 1) and 79 from the second family (family 2) were analysed using a combined sedimentation-flotation method. The phenotype was defined as a binary trait - either positive or negative for egg shedding. The influence of non-genetic factors on egg shedding was analysed using SAS, the mode of inheritance was investigated using PAP and iBay, and the association between shedding of strongyle eggs and RAG was estimated by odds ratios. Previously established genotypes for 315 microsatellite markers were used for QTL analyses using GRID QTL. The inheritance of "strongylid egg shedding" is influenced by major genes on ECA15 and ECA20. Shedding of strongylid eggs is associated with RAG in family 1 but not in family 2. Conclusions: The status of "shedding of strongyle eggs" has a genetic background. The results were inconclusive as to whether "egg shedding" and RAG share common genetic components. Our results suggest that it may be possible to select for resistance against strongylid nematodes.
Resumo:
Systemic immune activation, a major determinant of HIV disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. While human genetic variants influencing HIV viral load have been identified, it is unknown to what extent the host genetic background contributes to inter-individual differences in other determinants of HIV pathogenesis like gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty-acid binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble sCD14 (sCD14), a marker of LPS bioactivity and microbial translocation. We also assessed the correlations between HIV viral load, sCD14 and I-FABP. While we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV viral load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
The aims of this review are to summarize the definitions, causes, and clinical course as well as the current understanding of the genetic background, mechanism of disease, and therapy of toxic epidermal necrolysis and Stevens-Johnson syndrome.
Resumo:
Canine and human atopic dermatitis are multifaceted diseases whose clinical development may be influenced by several factors, such as genetic background, environment, secondary infections, food and psychological effects. The role of the environment has been extensively examined in humans but remains unclear in dogs. The aim of this study was to examine environmental factors in two genetically close breeds, Labrador and golden retrievers. Using standard criteria, atopic dogs in Switzerland and Germany were selected and compared with healthy individuals. Information on environmental factors was collected using a 46-question survey encompassing date and place of birth, way of life at the breeder's and owner's home, food and treatments. Univariate and multivariate logistic regression were used to assess the association between potential risk factors and disease status. The following parameters were associated with an increased risk of disease development: living in a shed during puppyhood, adoption at the age of 8-12 weeks and washing the dog regularly. In contrast, the following factors were associated with a lower risk: living in a rural environment, living in a household with other animals and walking in a forest. These associations do not prove causality but support the primary hypothesis that certain environmental factors may influence the development of canine atopic dermatitis. Further studies are warranted to confirm these results and conclusions.
Resumo:
Dilated cardiomyopathy (DCM) is a heterogeneous group of heart diseases with a strong genetic background. Currently, many human DCM cases exist where no causative mutation can be identified. DCM also occurs with high prevalence in several large dog breeds. In the Doberman Pinscher a specific DCM form characterized by arrhythmias and/or echocardiographic changes has been intensively studied by veterinary cardiologists. We performed a genome-wide association study in Doberman Pinschers. Using 71 cases and 70 controls collected in Germany we identified a genome-wide significant association to DCM on chromosome 5. We validated the association in an independent cohort collected in the United Kingdom. There is no known DCM candidate gene under the association signal. Therefore, DCM in Doberman Pinschers offers the chance of identifying a novel DCM gene that might also be relevant for human health.
Resumo:
Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-beta, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-alpha, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.
Resumo:
Children with attention-deficit/hyperactivity disorder (ADHD) have a higher rate of obesity than children without ADHD. Obesity risk alleles may overlap with those relevant for ADHD. We examined whether risk alleles for an increased body mass index (BMI) are associated with ADHD and related quantitative traits (inattention and hyperactivity/impulsivity). We screened 32 obesity risk alleles of single nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS) for ADHD based on 495 patients and 1,300 population-based controls and performed in silico analyses of the SNPs in an ADHD meta-analysis comprising 2,064 trios, 896 independent cases, and 2,455 controls. In the German sample rs206936 in the NUDT3 gene (nudix; nucleoside diphosphate linked moiety X-type motif 3) was associated with ADHD risk (OR: 1.39; P = 3.4 × 10(-4) ; Pcorr = 0.01). In the meta-analysis data we found rs6497416 in the intronic region of the GPRC5B gene (G protein-coupled receptor, family C, group 5, member B; P = 7.2 × 10(-4) ; Pcorr = 0.02) as a risk allele for ADHD. GPRC5B belongs to the metabotropic glutamate receptor family, which has been implicated in the etiology of ADHD. In the German sample rs206936 (NUDT3) and rs10938397 in the glucosamine-6-phosphate deaminase 2 gene (GNPDA2) were associated with inattention, whereas markers in the mitogen-activated protein kinase 5 gene (MAP2K5) and in the cell adhesion molecule 2 gene (CADM2) were associated with hyperactivity. In the meta-analysis data, MAP2K5 was associated with inattention, GPRC5B with hyperactivity/impulsivity and inattention and CADM2 with hyperactivity/impulsivity. Our results justify further research on the elucidation of the common genetic background of ADHD and obesity.
Resumo:
The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.
Resumo:
The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background.