23 resultados para genetic algorithm-kernel partial least squares
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
Cataloging geocentric objects can be put in the framework of Multiple Target Tracking (MTT). Current work tends to focus on the S = 2 MTT problem because of its favorable computational complexity of O(n²). The MTT problem becomes NP-hard for a dimension of S˃3. The challenge is to find an approximation to the solution within a reasonable computation time. To effciently approximate this solution a Genetic Algorithm is used. The algorithm is applied to a simulated test case. These results represent the first steps towards a method that can treat the S˃3 problem effciently and with minimal manual intervention.
Resumo:
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both the correct associations among the observations, and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. Where S stands for the number of ’fences’ used in the problem, each fence consists of a set of observations that all originate from dierent targets. For a dimension of S ˃ the MTT problem becomes NP-hard. As of now no algorithm exists that can solve an NP-hard problem in an optimal manner within a reasonable (polynomial) computation time. However, there are algorithms that can approximate the solution with a realistic computational e ort. To this end an Elitist Genetic Algorithm is implemented to approximately solve the S ˃ MTT problem in an e cient manner. Its complexity is studied and it is found that an approximate solution can be obtained in a polynomial time. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to e ciently process large data sets with minimal manual intervention.
Resumo:
The primary aim of the present study was to assess morphological covariation between the face and the basicranium (midline and lateral), and to evaluate patterns of integration at two specific developmental stages. A group of 71 children (6-10 years) was compared with a group of 71 adults (20-35 years). Lateral cephalometric radiographs were digitized and a total of 28 landmarks were placed on three areas; the midline cranial base, the lateral cranial base and the face. Geometric morphometric methods were applied and partial least squares analysis was used to evaluate correlation between the three shape blocks. Morphological integration was tested both with and without removing the effect of allometry. In children, mainly the midline and, to a lesser extent, the lateral cranial base were moderately correlated to the face. In adults, the correlation between the face and the midline cranial base, which ceases development earlier than the lateral base, was reduced. However, the lateral cranial base retained and even strengthened its correlation to the face. This suggests that the duration of common developmental timing is an important factor that influences integration between craniofacial structures. However, despite the apparent switch of primary roles between the cranial bases during development, the patterns of integration remained stable, thereby supporting the role of genetics over function in the establishment and development of craniofacial shape.
Resumo:
(1)H HR-MAS NMR spectroscopy was applied to apple tissue samples deriving from 3 different cultivars. The NMR data were statistically evaluated by analysis of variance (ANOVA), principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA). The intra-apple variability of the compounds was found to be significantly lower than the inter-apple variability within one cultivar. A clear separation of the three different apple cultivars could be obtained by multivariate analysis. Direct comparison of the NMR spectra obtained from apple tissue (with HR-MAS) and juice (with liquid-state HR NMR) showed distinct differences in some metabolites, which are probably due to changes induced by juice preparation. This preliminary study demonstrates the feasibility of (1)H HR-MAS NMR in combination with multivariate analysis as a tool for future chemometric studies applied to intact fruit tissues, e.g. for investigating compositional changes due to physiological disorders, specific growth or storage conditions.
Resumo:
Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.