31 resultados para general transcription factor IIH (TFIIH)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General transcription factor IIH (TFIIH) consists of nine sub- units: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1–3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II1,4,5. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation6–9. Here we show that the Drosophila TFIIH com- ponent Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1alpha in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1alpha using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1alpha stabilization or activity through different mechanisms. Stabilization of HIF-1alpha protein by hypoxia or CoCl(2) did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1alpha controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1alpha in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1alpha under normoxic conditions with physiological roles that differ from those induced by hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing relevance of the cancer stem cell (CSC) hypothesis and the impact of CSC-associated markers in the carcinogenesis of solid tumours may provide potential prognostic implications in lung cancer. We propose that a collective genetic analysis of established CSC-related markers will generate data to better define the role of putative CSCs in lung adenocarcinoma (LAC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cancer initiation and progression might be driven by small populations of cells endowed with stem cell-like properties. Here we comparatively addressed the expression of genes encoding putative stemness regulators including c-Myc, Klf4, Nanog, Oct4A and Sox2 genes in benign prostatic hyperplasia (BPH) and prostate cancer (PCA). METHODS: Fifty-eight PCA and thirty-nine BPH tissues samples were used for gene expression analysis, as evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of specific Klf4 isoforms was tested by conventional PCR. Klf4 specific antibodies were used for protein detection in a tissue microarray including 404 prostate samples. RESULTS: Nanog, Oct4A and Sox2 genes were comparably expressed in BPH and PCA samples, whereas c-Myc and Klf4 genes were expressed to significantly higher extents in PCA than in BPH specimens. Immunohistochemical studies revealed that Klf4 protein is detectable in a large majority of epithelial prostatic cells, irrespective of malignant transformation. However, in PCA, a predominantly cytoplasmic location was observed, consistent with the expression of a differentially spliced Klf4α isoform. CONCLUSION: Klf4 is highly expressed at gene and protein level in BPH and PCA tissues but a cytoplasmic location of the specific gene product is predominantly detectable in malignant cells. Klf4 location might be of critical relevance to steer its functions during oncogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor CEBPA is crucial for normal myeloid differentiation. CEBPA gene mutations have been reported in patients with acute myeloid leukaemia. The inevitable evolution of chronic myeloid leukaemia (CML) in chronic phase (CP) to a fatal blast crisis (BC) is assumed to result from the acquisition of additional genetic changes in the leukaemic clone. Gain of CEBPA mutations might represent a key event causing the differentiation block observed in myeloid CML-BC, but not in CML-CP. Here, no CEBPA mutation in 95 CML-BC patients was found, suggesting a limited role, if any, of CEBPA mutations in this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transplantation with CD4+CD45RB(hi) T cells, adoptive transfer of wild-type but not IRF4-deficient T cells resulted in severe colitis. Furthermore, IRF4-deficient mice were protected from T cell-dependent chronic intestinal inflammation in trinitrobenzene sulfonic acid- and oxazolone-induced colitis. In addition, IRF4-deficient mice with induced colitis had reduced mucosal IL-6 production, and IRF4 was required for IL-6 production by mucosal CD90+ T cells, which it protected from apoptosis. Finally, the protective effect of IRF4 deficiency could be abrogated by systemic administration of either recombinant IL-6 or a combination of soluble IL-6 receptor (sIL-6R) plus IL-6 (hyper-IL-6). Taken together, our data identify IRF4 as a key regulator of mucosal IL-6 production in T cell-dependent experimental colitis and suggest that IRF4 might provide a therapeutic target for IBDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.