6 resultados para gene segregation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The goal of this study was to analyze the mode of inheritance of an overweight body condition in an experimental cat population. The cat population consisted of 95 cats of which 81 cats could be clearly classified into lean or overweight using the body condition scoring system according to Laflamme. The lean or overweight classification was then used for segregation analyses. Complex segregation analyses were employed to test for the significance of one environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene). The general genetic model fit the data significantly better than the environmental model (P = 0.0013). Among all other models employed, the major gene model explained the segregation of the overweight phenotype best. This is the first study in which a genetic component could be shown to be responsible for the development of overweight in cats.
Resumo:
The prevalence of deafness is high in cat populations in which the dominant white gene is segregating. The objective of this study was to investigate whether there is a gene that is responsible for deafness as well as for blue eyes and to establish a plausible mode of inheritance. For this purpose, data from an experimental colony with deaf cats were analyzed. The hearing status was determined by acoustically evoked brain stem responses (BAER). Complex segregation analyses were conducted to find out the most probable mode of inheritance using maximum likelihood procedures. The prevalence of deafness and partial hearing in the experimental colony was 67% and 29%, respectively. The results of the bivariate segregation analysis support the hypothesis of a pleiotropic major gene segregating for deafness and blue iris colour. The high heritability coefficients for both traits, 0.55 and 0.75 respectively, indicate that beside the major gene there is an important influence of polygenic effects.
Resumo:
Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.
Resumo:
Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.
Resumo:
BACKGROUND/AIM To investigate the underlying pathomechanism in a 33-year-old female Caucasian patient presenting with chronic progressive external ophthalmoplegia (CPEO) plus symptoms. METHODS Histochemical analysis of skeletal muscle and biochemical measurements of individual oxidative phosphorylation (OXPHOS) complexes. Genetic analysis of mitochondrial DNA in various tissues with subsequent investigation of single muscle fibres for correlation of mutational load. RESULTS The patient's skeletal muscle showed 20% of cytochrome c oxidase-negative fibres and 8% ragged-red fibres. Genetic analysis of the mitochondrial DNA revealed a novel point mutation in the mitochondrial tRNA(Ile) (MTTI) gene at position m.4282G>A. The heteroplasmy was determined in blood, buccal cells and muscle by restriction fragment length polymorphism (RFLP) combined with a last fluorescent cycle. The total mutational load was 38% in skeletal muscle, but was not detectable in blood or buccal cells of the patient. The phenotype segregated with the mutational load as determined by analysis of single cytochrome c oxidase-negative/positive fibres by laser capture microdissection and subsequent LFC-RFLP. CONCLUSIONS We describe a novel MTTI transition mutation at nucleotide position m.4282G>A associated with a CPEO plus phenotype. The novel variant at position m.4282G>A disrupts the middle bond of the D-stem of the tRNA(Ile) and is highly conserved. The conservation and phenotype-genotype segregation strongly suggest pathogenicity and is in good agreement with the MTTI gene being frequently associated with CPEO. This novel variant broadens the spectrum of MTTI mutations causing CPEO.
Resumo:
BACKGROUND Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH). RESULTS We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype. CONCLUSION This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD.