23 resultados para gene expression regulation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression.
Resumo:
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.
Resumo:
Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.
Resumo:
Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.
Resumo:
Metabolic and endocrine adaptations to support milk production during the transition period vary between individual cows. This variation between cows to adapt to lactation may have a genetic basis. The present field study was carried out to determine hepatic adaptations occurring from late pregnancy through early lactation by measuring mRNA abundance of candidate genes in dairy cows on-farm. Additionally, the objective was to observe the diversity in inter-individual variation for the candidate genes that may give indications where individual adaptations at a molecular level can be found. This study was carried out on-farm including 232 dairy cows (parity >3) from 64 farms in Switzerland. Blood and liver samples were collected on d 20+/-7 before parturition, on d 24+/-2, and on d 89+/-4 after parturition. Blood plasma was assayed for concentrations of glucose, nonesterified fatty acids, beta-hydroxybutyrate, cholesterol, triglycerides, urea, albumin, protein, insulin, insulin-like growth factor-1, leptin, 3,5,3'-triiodothyronine, and thyroxine. Liver samples were obtained at the same time points and were measured for mRNA abundance of 26 candidate genes encoding enzymes and nuclear receptors involved in gluconeogenesis, fatty acid beta-oxidation, fatty acid and triglyceride synthesis, ketogenesis, citric acid cycle, cholesterol synthesis, and the urea cycle. The cows in the present study experienced a marked metabolic load in early lactation, as presented by changes in plasma metabolites and hormones, and responded accordingly with upregulation and downregulation of almost all candidate genes involved in metabolic processes in the liver. The observed inter-individual variation for the candidate genes, which was highest for acetyl-CoA-carboxylase and glycerol-3-phosphate dehydrogenase 2, should be further investigated to unravel the regulation at molecular level for optimal adaptive performance in dairy cows.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
With increasing life expectancy and active lifestyles, the longevity of arthroplasties has become an important problem in orthopaedic surgery and will remain so until novel approaches to joint preservation have been developed. The sensitivity of the recipient to the metal alloys may be one of the factors limiting the lifespan of implants. In the present study, the response of human monocytes from peripheral blood to an exposure to metal ions was investigated, using the method of real-time polymerase chain reaction (PCR)-based low-density arrays. Upon stimulation with bivalent (Co2+ and Ni2+) and trivalent (Ti3+) cations and with the calcium antagonist LaCl3, the strength of the elicited monocytic response was in the order of Co2+ > or = Ni2+ > Ti3+ > or = LaCl3. The transcriptional regulation of the majority of genes affected by the exposure of monocytes to Co2+ and Ni2+ was similar. Some genes critically involved in the processes of inflammation and bone resorption, however, were found to be differentially regulated by these bivalent cations. The data demonstrate that monocytic gene expression is adapted in response to metal ions and that this response is, in part, specific for the individual metals. It is suggested that metal alloys used in arthroplasties may affect the extent of inflammation and bone resorption in the peri-implant tissues in dependence of their chemical composition.
Resumo:
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.
Resumo:
It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.
Resumo:
ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.
Resumo:
Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.