3 resultados para gene construct
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Small cell lung cancer (SCLC) is characterized by an aggressive phenotype and acquired resistance to a broad spectrum of anticancer agents. TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising candidate for safe and selective induction of tumor cell apoptosis without toxicity to normal tissues. Here we report that TRAIL failed to induce apoptosis in SCLC cells and instead resulted in an up to 40% increase in proliferation. TRAIL-induced SCLC cell proliferation was mediated by extracellular signal-regulated kinase 1 and 2, and dependent on the expression of surface TRAIL-receptor 2 (TRAIL-R2) and lack of caspase-8, which is frequent in SCLC. Treatment of SCLC cells with interferon-gamma (IFN-gamma) restored caspase-8 expression and facilitated TRAIL-induced apoptosis. The overall loss of cell proliferation/viability upon treatment with the IFN-gamma-TRAIL combination was 70% compared to TRAIL-only treated cells and more than 30% compared to untreated cells. Similar results were obtained by transfection of cells with a caspase-8 gene construct. Altogether, our data suggest that TRAIL-R2 expression in the absence of caspase-8 is a negative determinant for the outcome of TRAIL-based cancer therapy, and provides the rationale for using IFN-gamma or other strategies able to restore caspase-8 expression to convert TRAIL from a pro-survival into a death ligand.
Resumo:
Pichia pastoris, a methylotrophic yeast, is an established system for the production of heterologous proteins, particularly biopharmaceuticals and industrial enzymes. To maximise and optimise the production of recombinant products, recent molecular research has focused on numerous issues including the design of expression vectors, optimisation of gene copy number, co-expression of secretory proteins such as chaperones, engineering of glycosylation and secretory pathways, etc. However, the physiological effects of different cultivation strategies are often difficult to separate from the molecular effects of the gene construct (e.g., cellular stress through over-expression or incorrect post-translational processing). Hence, overall system optimisation is difficult, even though it is urgently required in order to describe and understand the behaviour of new molecular constructs. This review focuses on particular aspects of recombinant protein production related to variations in biomass growth and their implications for strain design and screening, as well as on the concept of rational comparisons between cultivation systems for the development of specific production processes in bioreactors. The relationship between specific formation rates of secreted recombinant proteins, qp, and specific growth rates, μ, has been analysed in a conceptual attempt to compare different systems, particularly those based on AOX1/methanol and GAP/glucose, and this has now evolved into a pivotal concept for bioprocess engineering of P. pastoris.
Resumo:
The CYP17A1 gene is the qualitative regulator of steroidogenesis. Depending on the presence or absence of CYP17 activities mineralocorticoids, glucocorticoids or adrenal androgens are produced. The expression of the CYP17A1 gene is tissue as well as species-specific. In contrast to humans, adrenals of rodents do not express the CYP17A1 gene and have therefore no P450c17 enzyme for cortisol production, but produce corticosterone. DNA methylation is involved in the tissue-specific silencing of the CYP17A1 gene in human placental JEG-3 cells. We investigated the role of DNA methylation for the tissue-specific expression of the CYP17A1 gene in rodents. Rats treated with the methyltransferase inhibitor 5-aza-deoxycytidine excreted the cortisol metabolite tetrahydrocortisol in their urine suggesting that treatment induced CYP17 expression and 17alpha-hydroxylase activity through demethylation. Accordingly, bisulfite modification experiments identified a methylated CpG island in the CYP17 promoter in DNA extracted from rat adrenals but not from testes. Both methyltransferase and histone deacetylase inhibitors induced the expression of the CYP17A1 gene in mouse adrenocortical Y1 cells which normally do not express CYP17, indicating that the expression of the mouse CYP17A1 gene is epigenetically controlled. The role of DNA methylation for CYP17 expression was further underlined by the finding that a reporter construct driven by the mouse -1041 bp CYP17 promoter was active in Y1 cells, thus excluding the lack of essential transcription factors for CYP17 expression in these adrenal cells.