12 resultados para gait energy image
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.
Resumo:
To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.
Resumo:
This paper focuses on the use of multi-detector row dual-energy computed tomography (DECT) in the evaluation of postmortal examinations. The use of dual energy moves postmortem CT to an entirely new dimension of diagnostic sensitivity where contrast in the image is not merely limited to X-ray attenuation differences, but may include elements of functional and tissue characterization. This additional information may be used to improve the benefit postmortem imaging can provide to supplement and simplify the conventional autopsy.
Resumo:
In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.
Resumo:
An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.
Resumo:
The focal point of this paper is to propose and analyze a P 0 discontinuous Galerkin (DG) formulation for image denoising. The scheme is based on a total variation approach which has been applied successfully in previous papers on image processing. The main idea of the new scheme is to model the restoration process in terms of a discrete energy minimization problem and to derive a corresponding DG variational formulation. Furthermore, we will prove that the method exhibits a unique solution and that a natural maximum principle holds. In addition, a number of examples illustrate the effectiveness of the method.
Resumo:
OBJECTIVE The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses. MATERIALS AND METHODS A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy). Three image series for each phantom configuration were reconstructed: uncorrected, VME, and iMAR. Two independent, blinded radiologists assessed image quality quantitatively (noise and attenuation) and subjectively (5-point Likert scale). Intraclass correlation coefficients (ICCs) and Cohen κ were calculated to evaluate interreader agreements. Repeated measures analysis of variance and Friedman test were used to compare quantitative and qualitative image quality. Post hoc testing was performed using a corrected (Bonferroni) P < 0.017. RESULTS Agreements between readers were high for noise (all, ICC ≥ 0.975) and attenuation (all, ICC ≥ 0.986); agreements for qualitative assessment were good to perfect (all, κ ≥ 0.678). Compared with uncorrected images, VME showed significant noise reduction in the phantom with titanium only (P < 0.017), and iMAR showed significantly lower noise in all regions and phantom configurations (all, P < 0.017). In all phantom configurations, deviations of attenuation were smallest in images reconstructed with iMAR. For VME, there was a tendency toward higher subjective image quality in phantoms with titanium compared with uncorrected images, however, without reaching statistical significance (P > 0.017). Subjective image quality was rated significantly higher for images reconstructed with iMAR than for uncorrected images in all phantom configurations (all, P < 0.017). CONCLUSIONS Iterative MAR showed better MAR capabilities than VME in settings with bilateral hip prosthesis or unilateral steel prosthesis. In settings with unilateral hip prosthesis made of titanium, VME and iMAR performed similarly well.