19 resultados para future energy scenario
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: In order to optimise the cost-effectiveness of active surveillance to substantiate freedom from disease, a new approach using targeted sampling of farms was developed and applied on the example of infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) in Switzerland. Relevant risk factors (RF) for the introduction of IBR and EBL into Swiss cattle farms were identified and their relative risks defined based on literature review and expert opinions. A quantitative model based on the scenario tree method was subsequently used to calculate the required sample size of a targeted sampling approach (TS) for a given sensitivity. We compared the sample size with that of a stratified random sample (sRS) with regard to efficiency. RESULTS: The required sample sizes to substantiate disease freedom were 1,241 farms for IBR and 1,750 farms for EBL to detect 0.2% herd prevalence with 99% sensitivity. Using conventional sRS, the required sample sizes were 2,259 farms for IBR and 2,243 for EBL. Considering the additional administrative expenses required for the planning of TS, the risk-based approach was still more cost-effective than a sRS (40% reduction on the full survey costs for IBR and 8% for EBL) due to the considerable reduction in sample size. CONCLUSIONS: As the model depends on RF selected through literature review and was parameterised with values estimated by experts, it is subject to some degree of uncertainty. Nevertheless, this approach provides the veterinary authorities with a promising tool for future cost-effective sampling designs.
Resumo:
Potential future changes in tropical cyclone (TC) characteristics are among the more serious regional threats of global climate change. Therefore, a better understanding of how anthropogenic climate change may affect TCs and how these changes translate in socio-economic impacts is required. Here, we apply a TC detection and tracking method that was developed for ERA-40 data to time-slice experiments of two atmospheric general circulation models, namely the fifth version of the European Centre model of Hamburg model (MPI, Hamburg, Germany, T213) and the Japan Meteorological Agency/ Meteorological research Institute model (MRI, Tsukuba city, Japan, TL959). For each model, two climate simulations are available: a control simulation for present-day conditions to evaluate the model against observations, and a scenario simulation to assess future changes. The evaluation of the control simulations shows that the number of intense storms is underestimated due to the model resolution. To overcome this deficiency, simulated cyclone intensities are scaled to the best track data leading to a better representation of the TC intensities. Both models project an increased number of major hurricanes and modified trajectories in their scenario simulations. These changes have an effect on the projected loss potentials. However, these state-of-the-art models still yield contradicting results, and therefore they are not yet suitable to provide robust estimates of losses due to uncertainties in simulated hurricane intensity, location and frequency.
Resumo:
The 1s-2s interval has been measured in the muonium (;mgr;(+)e(-)) atom by Doppler-free two-photon pulsed laser spectroscopy. The frequency separation of the states was determined to be 2 455 528 941.0(9.8) MHz, in good agreement with quantum electrodynamics. The result may be interpreted as a measurement of the muon-electron charge ratio as -1-1.1(2.1)x10(-9). We expect significantly higher accuracy at future high flux muon sources and from cw laser technology.
Resumo:
BACKGROUND: Due to the predicted age shift of the population an increase in the number of patients with late AMD is expected. At present smoking represents the only modifiable risk factor. Supplementation of antioxidants in patients at risk is the sole effective pharmacological prevention. The aim of this study is to estimate the future epidemiological development of late AMD in Switzerland and to quantify the potential effects of smoking and antioxidants supplementation. METHODS: The modelling of the future development of late AMD cases in Switzerland was based on a meta-analysis of the published data on AMD-prevalence and on published Swiss population development scenarios until 2050. Three different scenarios were compared: low, mean and high. The late AMD cases caused by smoking were calculated using the "population attributable fraction" formula and data on the current smoking habits of the Swiss population. The number of potentially preventable cases was estimated using the data of the Age-Related Eye Disease Study (AREDS). RESULTS: According to the mean population development scenario, late AMD cases in Switzerland will rise from 37 200 cases in 2005 to 52 500 cases in 2020 and to 93 200 cases in 2050. Using the "low" and the "high" scenarios the late AMD cases may range from 49 500 to 56 000 in 2020 and from 73 700 to 118 400 in 2050, respectively. Smoking is responsible for approximately 7 % of all late AMD cases, i. e., 2600 cases in 2005, 3800 cases in 2020, 6600 cases in 2050 ("mean scenario"). With future antioxidant supplementation to all patients at risk another 3100 cases would be preventable until 2020 and possibly 23 500 cases until 2050. CONCLUSION: Due to age shift in the population a 2.5-fold increase in late AMD cases until 2050 is expected, representing a socioeconomic challenge. Cessation of smoking and supplementation of antioxidants to all patients at risk has the potential to reduce this number. Unfortunately, public awareness is low. These data may support health-care providers and public opinion leaders when developing public education and prevention strategies.
Resumo:
Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.
Resumo:
The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22-year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22-year period) are expected to increase in the future because of changes in flood-generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
In this paper we address energy efficiency issues of Information Centric Networking (ICN) architectures. In the proposed framework, we investigate the impact of ICN architectures on energy consumption of networking hardware devices and compare them with the energy consumption of other content dissemination methods. In particular, we investigate the consequences of caching in ICN from the energy efficiency perspective, taking into account the energy consumption of different hardware components in the ICN architectures. Based on the results of the analysis, we address the practical issues regarding the possible deployment and evolution of ICN from an energy-efficiency perspective. Finally, we summarize our findings and discuss the outlook/future perspectives on the energy efficiency of Information-Centric Networks.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
The power sector is to play a central role in a low carbon economy. In all the decarbonisation scenarios of the European Union renewable energy sources (RES) will be a crucial part of the solution. Current grids constitute however major bottlenecks for the future expansion of RES. Recognising the need for a modernisation of its grids, the European Union has called for the creation of a "smart supergrid" interconnecting European grids at the continental level and making them "intelligent" through the addition of information and communication technology (ICT). To implement its agenda the EU has taken a leading role in coordinating research efforts and creating a common legislative framework for the necessary modernisation of Europe’s grids. This paper intends to give both an overview and a critical appraisal of the measures taken so far by the European Union to "transform" the grids into the backbone of a decarbonised electricity system. It suggests that if competition is to play a significant role in the deployment of smart grids, the current regulatory paradigm will have to be fundamentally reassessed
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11700years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid-inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim, a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid-inferred July-temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model-data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500m and treeline positions of ca. 2500m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low-impact pastoralism to preserve species-rich alpine meadows.
Resumo:
Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6 deg and 15 deg. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ~2 % for H and up to 12 % for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.
Resumo:
Until recently, measurements of energy expenditure (EE; herein defined as heat production) in respiration chambers did not account for the extra energy requirements of grazing dairy cows on pasture. As energy is first limiting in most pasture-based milk production systems, its efficient use is important. Therefore, the aim of the present study was to compare EE, which can be affected by differences in body weight (BW), body composition, grazing behavior, physical activity, and milk production level, in 2 Holstein cow strains. Twelve Swiss Holstein-Friesian (HCH; 616 kg of BW) and 12 New Zealand Holstein-Friesian (HNZ; 570 kg of BW) cows in the third stage of lactation were paired according to their stage of lactation and kept in a rotational, full-time grazing system without concentrate supplementation. After adaption, the daily milk yield, grass intake using the alkane double-indicator technique, nutrient digestibility, physical activity, and grazing behavior recorded by an automatic jaw movement recorder were investigated over 7d. Using the (13)C bicarbonate dilution technique in combination with an automatic blood sampling system, EE based on measured carbon dioxide production was determined in 1 cow pair per day between 0800 to 1400 h. The HCH were heavier and had a lower body condition score compared with HNZ, but the difference in BW was smaller compared with former studies. Milk production, grass intake, and nutrient digestibility did not differ between the 2 cow strains, but HCH grazed for a longer time during the 6-h measurement period and performed more grazing mastication compared with the HNZ. No difference was found between the 2 cow strains with regard to EE (291 ± 15.6 kJ) per kilogram of metabolic BW, mainly due to a high between-animal variation in EE. As efficiency and energy use are important in sustainable, pasture-based, organic milk production systems, the determining factors for EE, such as methodology, genetics, physical activity, grazing behavior, and pasture quality, should be investigated and quantified in more detail in future studies.
Resumo:
Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.