2 resultados para fungus cell

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a 43-year old patient with an acute T-Cell Leucemia, currently in Aplasia after Chemotherapy, showing five targetoid bluish skin lesions. Due to a three weeks history of septic symptoms he was under treatment with antibiotics and antifungals. Multiple septic foci were localized (N. caudatus, liver, kidneys, lung, spine and right psoas). Microbiology analyses of various blood cultures and of the aspirate of the psoas abscess showed initially negative results. Clinically the skin lesions were suspected to be of septic or thrombogenic origin. A 5 mm punch biopsy was performed and separated for microbiological diagnostic and conventional histology. Surprisingly large fungal agents in mostly intravascular distribution were seen histologically and identified as Lichtheimia corymbifera (syn. Absidia corymbifera) by PCR. Cultures remained negative. The patient died on the following day. Lichtheimia corymbifera is a fungus belonging to the family of mucormycosis. Aspergillosis and mucormycosis are the most common mold infections in patients with hematological malignancies, clinically often indistinguishable. However, the true incidence of mucormycosis is not known and probably underestimated because of difficulties in diagnosis. Mucormycosis typically causes acute, aggressive, and frequently angioinvasive infections presenting with solitary local skin necrosis. The fact that the pathogenic fungus was isolated from a very discrete skin lesion but was not detected in blood cultures, and only later in the PCR of the aspirate of the psoas abscess, makes this case exceptional.