16 resultados para format-compliant
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional pictures or need special software for visualization. The portable document format (PDF) offers a simple way to interactively display 3D surface data without additional software other than a recent version of Adobe Reader (Adobe, San Jose, Calif). The purposes of this article were to give an example of how 3D data and their analyses can be interactively displayed in 3 dimensions in electronic publications, and to show how they can be exported from any software for diagnostic reports and communications among colleagues.
Resumo:
The objective of this study was to explore the perception of the legal authorities regarding different report types and visualization techniques for post-mortem radiological findings.
Resumo:
BACKGROUND: Intracoronary application of BM-derived cells for the treatment of acute myocardial infarction (AMI) is currently being studied intensively. Simultaneously, strict legal requirements surround the production of cells for clinical studies. Thus good manufacturing practice (GMP)-compliant collection and preparation of BM for patients with AMI was established by the Cytonet group. METHODS: As well as fulfillment of standard GMP requirements, including a manufacturing license, validation of the preparation process and the final product was performed. Whole blood (n=6) and BM (n=3) validation samples were processed under GMP conditions by gelafundin or hydroxyethylstarch sedimentation in order to reduce erythrocytes/platelets and volume and to achieve specifications defined in advance. Special attention was paid to the free potassium (<6 mmol/L), some rheologically relevant cellular characteristics (hematocrit <0.45, platelets <450 x 10(6)/mL) and the sterility of the final product. RESULTS: The data were reviewed and GMP compliance was confirmed by the German authorities (Paul-Ehrlich Institute). Forty-five BM cell preparations for clinical use were carried out following the validated methodology and standards. Additionally three selections of CD34+ BM cells for infusion were performed. All specification limits were met. Discussion In conclusion, preparation of BM cells for intracoronary application is feasible under GMP conditions. As the results of sterility testing may not be available at the time of intracoronary application, the highest possible standards to avoid bacterial and other contaminations have to be applied. The increased expense of the GMP-compliant process can be justified by higher safety for patients and better control of the final product.
Resumo:
The authors describe the use of the Cardica C-Port xA Distal Anastomosis System to perform an automated, high-flow extracranial-intracranial bypass. The C-Port system has been developed and tested in coronary artery bypass surgery for rapid distal coronary artery anastomoses. Air-powered, it performs an automated end-to-side anastomosis within seconds by nearly simultaneously making an arteriotomy and inserting 13 microclips into the graft and recipient vessel. Intracranial use of the device was first simulated in a cadaver prepared for microsurgical anatomical dissection. The authors used this system in a 43-year-old man who sustained a subarachnoid hemorrhage after being assaulted and was found to have a traumatic pseudoaneurysm of the proximal intracranial internal carotid artery. The aneurysm appeared to be enlarging on serial imaging studies and it was anticipated that a bypass would probably be needed to treat the lesion. An end-to-side bypass was performed with the C-Port system using a saphenous vein conduit extending from the common carotid artery to the middle cerebral artery. The bypass was demonstrated to be patent on intraoperative and postoperative arteriography. The patient had a temporary hyperperfusion syndrome and subsequently made a good neurological recovery. The C-Port system facilitates the performance of a high-flow extracranial-intracranial bypass with short periods of temporary arterial occlusion. Because of the size and configuration of the device, its use is not feasible in all anatomical situations that require a high-flow bypass; however it is a useful addition to the armamentarium of the neurovascular surgeon.
Resumo:
Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).
Resumo:
OBJECTIVES: The C-Port System (Cardica, Inc, Redwood City, Calif) integrates in one tool all functions necessary to enable rapid automated distal coronary anastomoses. The goal of this prospective, nonrandomized, and multicenter study is to determine the safety and efficacy of this novel anastomotic system. METHODS: Five centers enrolled 133 patients awaiting elective coronary artery bypass grafting surgery. Outcome variables were intraoperative device performance, incidence of device-related adverse events, predischarge and 6-month angiographic graft patency, and 12-month clinical outcome. Independent core laboratories performed qualitative and quantitative angiographic and computed tomographic assessments. RESULTS: The C-Port was used to perform a vein-to-coronary anastomosis in 130 patients. Intraoperative conversion to a hand-sewn anastomosis was necessary in 11 patients because of inadequate target site preparation, inappropriate target vessel selection, or both. Inadequate blood flow related to poor runoff required conversion in 3 additional patients. Three patients died before discharge of causes unrelated to the device. At discharge, 113 patients had a C-Port implant in place, and 104 C-Port anastomoses were studied by means of angiography, resulting in 100 FitzGibbon A, 3 FitzGibbon B, and 1 FitzGibbon 0 classifications. At 6 months, one additional patient died of a device-unrelated cause, and 98 patients were evaluated by means of angiography (n = 89). Overall patency (FitzGibbon A) was 92.1%. Three C-Port anastomoses were rated FitzGibbon B, and 4 were rated FitzGibbon 0. At 12 months, 107 (98.2%) of 109 alive patients were followed up, without any reports of device-related major adverse cardiac events. CONCLUSIONS: The C-Port System allows for a rapid, reliable, and compliant distal anastomosis and yields favorable 6-month angiographic and 12-month clinical results when compared with published studies.
Resumo:
BACKGROUND There is weak evidence to support the benefit of periodontal maintenance therapy in preventing tooth loss. In addition, the effects of long-term periodontal treatment on general health are unclear. METHODS Patients who were compliant and partially compliant (15 to 25 years' follow-up) in private practice were observed for oral and systemic health changes. RESULTS A total of 219 patients who were compliant (91 males and 128 females) were observed for 19.1 (range 15 to 25; SD ± 2.8) years. Age at reassessment was 64.6 (range: 39 to 84; SD ± 9.0) years. A total of 145 patients were stable (0 to 3 teeth lost), 54 were downhill (4 to 6 teeth lost), and 21 patients extreme downhill (>6 teeth lost); 16 patients developed hypertension, 13 developed type 2 diabetes, and 15 suffered myocardial infarcts (MIs). A minority developed other systemic diseases. Risk factors for MI included overweight (odds ratio [OR]: 9.04; 95% confidence interval [CI]: 2.9 to 27.8; P = 0.000), family history with cardiovascular disease (OR: 3.10; 95% CI: 1.07 to 8.94; P = 0.029), type 1 diabetes at baseline (P = 0.02), and developing type 2 diabetes (OR: 7.9; 95% CI: 2.09 to 29.65; P = 0.000). A total of 25 patients who were partially compliant (17 males and eight females) were observed for 19 years. This group had a higher proportion of downhill and extreme downhill cases and MI. CONCLUSIONS Patients who left the maintenance program in a periodontal specialist practice in Norway had a higher rate of tooth loss than patients who were compliant. Patients who were compliant with maintenance in a specialist practice in Norway have a similar risk of developing type 2 diabetes as the general population. A rate of 0.0037 MIs per patient per year was recorded for this group. Due to the lack of external data, it is difficult to assess how this compares with patients who have periodontal disease and are untreated.
Resumo:
We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties.
Resumo:
Numerous designs of bioprosthetic valves exist. The sutureless surgical valve is a newer design concept which combines elements of the transcatheter valve technology with surgical valves. This design aims at shorter and easier implantation. It was the aim of this study to perform hemodynamic and kinematic measurements for this type of valves to serve as a baseline for following studies which investigate the effect of the aortic root on the valve performance. To this end, the Edwards Intuity aortic valve was investigated in a new in vitro flow loop mimicking the left heart. The valve was implanted in a transparent, compliant aortic root model, and the valve kinematics was investigated using a high speed camera together with synchronized hemodynamic measurements of pressures and flows. The valve closure was asynchronous (one by one leaflet), and the valve started to close before the deceleration of the fluid. The aortic root model showed a dilation of the sinuses which was different to the ascending aorta, and the annulus was found to move towards the left ventricle during diastole and towards the aorta during systole.