11 resultados para forest shade

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In groves of ectomycorrhizal caesalpiniaceous species in the Atlantic coastal forest of Central Africa the dominant tree Microberlinia bisulcata, which is shade-intolerant as a seedling but highly light-responding as a sapling, shows very limited regeneration. M. bisulcata saplings were mapped in an 82.5-ha plot at Korup and found to be located significantly far (>40 m) away from adults, a result confirmed by direct testing in a second 56-ha plot. Sapling growth over 6 years, the distribution of newly emerging seedlings around adults, recruitment of saplings in a large opening and the outward extent of seedlings at the grove edge were also investigated. Two processes appear to have been operating: (1) a very strong and consistent restriction of the very numerous seedlings establishing after masting close to adults, and (2) a strong but highly spatially variable promotion of distant survivors by increased light from the deaths of large trees of species other than M. bisulcata (which itself has very low mortality rate). This leads to an apparent escape-from-adults effect. To maintain saplings in the shade between multiple short periods of release ectomycorrhizal connections to other co-occurring caesalp species may enable a rachet-type mechanism. The recorded sapling dynamics currently contribute an essential part of the long-term cycling of the groves. M. bisulcata is an interesting example of an important group of tropical trees, particularly in Africa, which are both highly light-demanding when young yet capable also of forming very large forest emergents. To more comprehensively explain tropical tree responses, the case is made for adding a new dimension to the trade-off concept of early tree light-response versus adult longevity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large-crowned emergent tree Microberlinia bisulcata dominates rain forest groves at Korup National Park, Cameroon, along with two codominants, Tetraberlinia bifoliolata and T. korupensis. M. bisulcata has a pronounced modal size frequency distribution around 110 cm stem diameter: its recruitment potential is very poor. It is a long-lived light-demanding species, one of many found in African forests. Tetraberlinia species lack modality, are more shade tolerant, and recruit better. All three species are ectomycorrhizal. M. bisulcata dominates grove basal area, even though it has similar numbers of trees (≥50 cm stem diameter) as each of the other two species. This situation presented a conundrum that prompted a long-term study of grove dynamics. Enumerations of two plots (82.5 and 56.25 ha) between 1990 and 2010 showed mortality and recruitment of M. bisulcata to be very low (both rates 0.2% per year) compared with Tetraberlinia (2.4% and 0.8% per year), and M. bisulcata grows twice as fast as the Tetraberlinia. Ordinations indicated that these three species determined community structure by their strong negative associations while other species showed almost none. Ranked species abundance curves fitted the Zipf-Mandelbrot model well and allowed “overdominance” of M. bisulcata to be estimated. Spatial analysis indicated strong repulsion by clusters of large (50 to <100 cm) and very large (≥100 cm) M. bisulcata of their own medium-sized (10 to <50 cm) trees and all sizes of Tetraberlinia. This was interpreted as competition by M. bisulcata increasing its dominance, but also inhibition of its own replacement potential. Stem coring showed a modal age of 200 years for M. bisulcata, but with large size variation (50–150 cm). Fifty-year model projections suggested little change in medium, decreases in large, and increases in very large trees of M. bisulcata, accompanied by overall decreases in medium and large trees of Tetraberlinia species. Realistically increasing very-large-tree mortality led to grove collapse without short-term replacement. M. bisulcata most likely depends on climatic events to rebuild its stands: the ratio of disturbance interval to median species' longevity is important. A new theory of transient dominance explains how M. bisulcata may be cycling in abundance over time and displaying nonequilibrium dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resource heterogeneity may influence how plants are attacked and respond to consumers in multiple ways. Perhaps a better understanding of how this interaction might limit sapling recruitment in tree populations may be achieved by examining species’ functional responses to herbivores on a continuum of resource availability. Here, we experimentally reduced herbivore pressure on newly established seedlings of two dominant masting trees in 40 canopy gaps, across c. 80 ha of tropical rain forest in central Africa (Korup, Cameroon). Mesh cages were built to protect individual seedlings, and their leaf production and changes in height were followed for 22 months. With more light, herbivores increasingly prevented the less shade-tolerant Microberlinia bisulcata from growing as tall as it could and producing more leaves, indicating an undercompensation. The more shade-tolerant Tetraberlinia bifoliolata was much less affected by herbivores, showing instead near to full compensation for leaf numbers, and a negligible to weak impact of herbivores on its height growth. A stage-matrix model that compared control and caged populations lent evidence for a stronger impact of herbivores on the long-term population dynamics of M. bisulcata than T. bifoliolata. Our results suggest that insect herbivores can contribute to the local coexistence of two abundant tree species at Korup by disproportionately suppressing sapling recruitment of the faster-growing dominant via undercompensation across the light gradient created by canopy disturbances. The functional patterns we have documented here are consistent with current theory, and, because gap formations are integral to forest regeneration, they may be more widely applicable in other tropical forest communities. If so, the interaction between life-history and herbivore impact across light gradients may play a substantial role in tree species coexistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand succession in dipterocarp rain forest after logging, the structure, species composition and dynamics of primary (PF) and secondary (SF) forest at Danum were compared. In 10 replicate 0.16-ha plots per forest type trees >= 10 cm gbh (3.2 cm dbh) were measured in 1995 and 2001. The SF had been logged in 1988, which allowed successional change to be recorded at 8 and 13 years. In 2001, saplings (1.0-3.1 cm dbh) were measured in nested quadrats. The forest types were similar in mean radiation at 2 m height, and in density, basal area and species number of all trees. Among small (10 <= 31.4) and large ( >= 31.4 cm gbh) trees, in both 1995 and 2001, there were 10- and 3-fold more dipterocarps in SF than PF respectively; and averaging over the two dates, there were correspondingly ca. 10- and 18-fold more pioneers. Mortality was ca. 60% higher in SF than PF, largely due to a seven-fold difference for pioneers: for dipterocarps there was little difference. Recruitment was similar in PF and SE Stem growth rates were 37% higher in SF than PF for all trees, although dipterocarps showed the opposite trend. Among saplings, dipterocarps dominated SF with a 10-fold higher density than in PF. For dipterocarps, the light (LH) and medium-heavy (MHH) canopy hardwoods, and the shade-tolerant, smaller-stature other (OTH) species (e.g. Hopea and Vatica) were in the ratios ca. 40:15:45 in SF and 85: < 1:15 in PF. LHs had higher mortality than OTHs in SE In PF ca. 80% of the saplings were LH: in SF ca. 70% were OTH. The predominance of OTHs in SF is explained by the logging of primary rain forest which was in a likely late stage of recovery from natural disturbance, plus the continuing shaded conditions in the understorey promoted by dense pioneer vegetation. At 13 years after logging succession appeared to be inhibited: LHs were being suppressed but MHHs and OTHs persisted. Succession in lowland dipterocarp, rain forests may therefore depend on the successional state of the primary forest when it is logged. A review of logged versus unlogged studies in Borneo highlights the need for more detailed ecological comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Although plants can reduce the impacts of herbivory in multiple ways, these defensive traits are often studied in isolation and an understanding of the resulting strategies is incomplete. * In the study reported here, empirical evidence was simultaneously evaluated for the three main sets of traits available to plants: (i) resistance through constitutive leaf traits, (ii) tolerance to defoliation and (iii) escape in space, for three caesalpiniaceous tree species Microberlinia bisulcata, Tetraberlinia bifoliolata and T. korupensis, which co-dominate groves within the lowland primary rain forest of Korup National Park (Cameroon). * Mesh cages were placed around individual wild seedlings to exclude insect herbivores at 41 paired canopy gap and understorey locations. After following seedling growth and survival for c. 2 years, caged and control treatments were removed, leaves harvested to determine nutrient and phenolic concentrations, leaf mass per area estimated, and seedling performance in gaps followed for a further c. 2 years to quantify tolerance to the leaf harvesting. * The more nutrient-rich leaves of the weakly shade-tolerant M. bisulcata were damaged much more in gaps than the two strongly shade-tolerant Tetraberlinia species, which had higher leaf mass per area and concentrations of total phenols. Conversely, the faster-growing M. bisulcata was better able to tolerate defoliation in terms of height growth (reflushing capacity), but not at maintaining overall leaf numbers, than the other two species. * Across gaps, insect-mediated Janzen–Connell effects were most pronounced for M. bisulcata, less so for T. korupensis, and not detectable for T. bifoliolata. The three species differed distinctly in their secondary metabolic profiles. * Taken together, the results suggested a conceptual framework linking the three sets of traits, one in which the three co-dominant species adopt different strategies towards herbivore pressure depending on their different responses to light availability. This study is one of the first in a natural forest ecosystem to examine resistance to, tolerance of, and escape from herbivory among a group of co-occurring tropical tree species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• Regeneration of the dominant ectomycorrhizal tree Microberlinia bisulcata in groves in Korup, Central Africa, is very poor. The hypothesis was tested that this species is more shade intolerant than other co-occurring species. • In two 1-yr trials, each with M. bisulcata and four other species at a nursery close to Korup, growth was measured under five PAR levels, with ± added P and ± watering in the dry season. In parallel experiments the effects of PAR with two R : FR ratios were investigated. • Increasing PAR had a consistent effect on the rates of increase in plant mass and on changes in the other variables. Doubling soil P, watering and halving the R : FR ratio had almost no effect. However, across species, mass at low PAR and relative growth rate related positively and negatively, respectively, to seed mass. • One contributing factor for the poor recruitment of M. bisulcata is therefore its low survival and slow growth at low PAR, due to its small seed size. The two codominant ectomycorrhizal grove species of Tetraberlinia, with larger seeds, were less affected by low PAR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraspecific and interspecific architectural patterns were studied for eight tree species of a Bornean rain forest. Trees 5--19 m tall in two 4-ha permanent sample plots in primary forest were selected, and three light descriptors and seven architectural traits for each tree were measured. Two general predictions were made: (1) Slow growing individuals (or short ones) encounter lower light, and have flatter crowns, fewer leaf layers, and thinner stems, than do fast growing individuals (or tall ones). (2) Species with higher shade-tolerance receive less light and have flatter crowns, fewer leaf layers, and thinner stems, than do species with lower shade-tolerance. Shade-tolerance is assumed to decrease with maximum growth rate, mortality rate, and adult stature of a species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in species composition in two 4–ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986 to 1996) for trees greater than or equal to 10 cm girth at breast height (gbh). Each included a lower–slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10 to <50 cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi–stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade–off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance–recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade–off in shade–tolerance versus drought–tolerance is suggested for among the understorey species. A two–storey (or vertical component) model is proposed where the understorey–overstorey species’ ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.