34 resultados para forage maize

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rumen-cannulated cows (n = 4) were fed successively silage made from either conventional or genetically modified (GM) maize. Results revealed no effects of GM maize on the dynamics of six ruminal bacterial strains (investigated by real-time PCR) compared to the conventional maize silage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation, and thus contaminating many industrial effluents and rivers. In the development of a phytotreatment to remove sulphonated aromatic compounds, rhubarb (Rheum rhaponticum), a plant producing natural anthraquinones, as well as maize (Zea mays) and celery (Apium graveolens), plants not producing anthraquinones, were tested for their ability to metabolise these xenobiotics. Plants were cultivated under hydroponic conditions, with or without sulphonated anthraquinones, and were harvested at different times. Either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 towards several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results indicated that the activity of cytochromes P450 and peroxidases significantly increased in rhubarb plants cultivated in the presence of sulphonated anthraquinones. A higher activity of cytochromes P450 was also detected in maize and celery exposed to the pollutants. In these two plants, a peroxidase activity was also detected, but without a clear difference between the control plants and the plants exposed to the organic contaminants. This research demonstrated the existence in rhubarb, maize and celery of biochemical mechanisms involved in the metabolism and detoxification of sulphonated anthraquinones. Taken together, results confirmed that rhubarb might be the most appropriate plant for the phytotreatment of these organic pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport of radioactive iodide 131I− in a structured clay loam soil under maize in a final growing phase was monitored during five consecutive irrigation experiments under ponding. Each time, 27 mm of water were applied. The water of the second experiment was spiked with 200 MBq of 131I− tracer. Its activity was monitored as functions of depth and time with Geiger-Müller (G-M) detectors in 11 vertically installed access tubes. The aim of the study was to widen our current knowledge of water and solute transport in unsaturated soil under different agriculturally cultivated settings. It was supposed that the change in 131I− activity (or counting rate) is proportional to the change in soil water content. Rapid increase followed by a gradual decrease in 131I− activity occurred at all depths and was attributed to preferential flow. The iodide transport through structured soil profile was simulated by the HYDRUS 1D model. The model predicted relatively deep percolation of iodide within a short time, in a good agreement with the observed vertical iodide distribution in soil. We found that the top 30 cm of the soil profile is the most vulnerable layer in terms of water and solute movement, which is the same depth where the root structure of maize can extend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound ​indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that ​indole may be involved in airborne priming. Using ​indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced ​indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of ​indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. ​Indole exposure markedly increases the herbivore-induced production of the stress hormones ​jasmonate-isoleucine conjugate and ​abscisic acid, which represents a likely mechanism for ​indole-dependent priming. These results demonstrate that ​indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks.