18 resultados para flux of CO2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to provide high precision stable carbon isotope ratios (δ13CO2 or δ13C of CO2) from small bubbly, partially and fully clathrated ice core samples we developed a new method based on sublimation coupled to gas chromatography-isotope ratio mass spectrometry (GC-IRMS). In a first step the trapped air is quantitatively released from ~30 g of ice and CO2 together with N2O are separated from the bulk air components and stored in a miniature glass tube. In an off-line step, the extracted sample is introduced into a helium carrier flow using a minimised tube cracker device. Prior to measurement, N2O and organic sample contaminants are gas chromatographically separated from CO2. Pulses of a CO2/N2O mixture are admitted to the tube cracker and follow the path of the sample through the system. This allows an identical treatment and comparison of sample and standard peaks. The ability of the method to reproduce δ13C from bubble and clathrate ice is verified on different ice cores. We achieve reproducibilities for bubble ice between 0.05 ‰ and 0.07 ‰ and for clathrate ice between 0.05 ‰ and 0.09 ‰ (dependent on the ice core used). A comparison of our data with measurements on bubble ice from the same ice core but using a mechanical extraction device shows no significant systematic offset. In addition to δ13C, the CO2 and N2O mixing ratios can be volumetrically derived with a precision of 2 ppmv and 8 ppbv, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoting effect of water on the electrochemical reduction of carbon dioxide (CO2) from non-aqueous solvents has been studied by means of cyclic voltammetry and in-situ surface-enhanced infrared absorption spectroscopy (SEIRAS). CO2 electroreduction on gold is known to be highly selective towards CO formation in aqueous and in non-aqueous media. The use of non-aqueous solvents is advantageous due to the significantly increased solubility of CO2 compared to aqueous systems. However, in the absence of any proton source, extremely high overpotentials are required for the CO2 electroreduction. In this work, we demonstrate for the first time a tremendous accelerating effect of water additives on the electroreduction of CO2 taking place at gold/acetonitrile interfaces. Already moderate amounts of water, in the concentration range of 0.5 to 0.7 M, are sufficient to decrease significantly the overpotential of CO2 reduction while keeping the CO2 concentration as high as in the pure acetonitrile. The effect of water additives on the mechanism of CO2 electroreduction on gold is discussed on the basis of electrochemical and IR spectroscopic data. The results obtained from gold are compared to analogue experiments carried out on platinum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. PATIENTS AND METHODS: 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. RESULTS: The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. CONCLUSIONS: The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of CO2 laser treatment through topically applied amine fluoride solution on demineralised enamel. MATERIALS AND METHODS: Sixty extracted human molar crowns were selected and cut longitudinally into half. One half was subjected to a 10-day pH-cycling procedure to create caries-like lesions, whereas the other was left non-demineralised. The following treatments were randomly assigned (one treatment per tooth, on respective non-demineralised and demineralised matched specimens): exposure to a 1% amine fluoride solution for 15 s without irradiation (group I), irradiation for 15 s with a continuous-wave CO2 laser (group II), or laser-treatment for 15 s through the amine fluoride solution applied immediately beforehand (group III). Fluoride uptake (n = 30) and acid resistance (n = 30) were determined after treatment. Enamel surface alterations after laser irradiation were monitored using scanning electron microscopy. RESULTS: In groups I and III, an increased fluoride uptake was detected (p < or = 0.05). Laser irradiation through topical fluoride resulted in an increased acid resistance of sound and demineralised enamel specimens in deeper layers (p < or = 0.05). In addition, less surface alterations were observed in SEM examination of specimens irradiated through the amine fluoride solution compared with counterparts treated with laser only. CONCLUSIONS: CO2 laser light application through an amine fluoride solution may be instrumental in enhancing acid resistance of sound and demineralised enamel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ ) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean’s biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of long-term exposure to elevated pCO2 concentrations on sulfate and nitrate assimilation was studied under field conditions using leaves from Quercus ilex and Quercus pubescens trees growing with ambient or elevated CO2 concentrations in the vicinity of three natural CO2 springs, Bossoleto, Laiatico and Sulfatara, in Tuscany, Italy. The activity of the key enzymes of sulfate assimilation, adenosine 5′-phosphosulfate reductase (APR) and nitrate assimilation, nitrate reductase (NR), were measured together with the levels of acid soluble thiols, and soluble non-proteinogenic nitrogen compounds. Whereas NR activity remained unaffected in Q. ilex or increased Q. pubescence, APR activity decreased in the area of CO2 springs. The latter changes were often accompanied by increased GSH concentrations, apparently synthesized from H2S and SO2 present in the gas mixture emitted from the CO2 springs. Thus, the diminished APR activity in leaves of Q. ilex and Q. pubescence from spring areas can best be explained by the exposure to gaseous sulfur compounds. Although the concentrations of H2S and SO2 in the gas mixture emitted from the vents at the CO2 springs were low at the Bossoleto and Laiatico spring, these sulfur gases pose physiological effects, which may override consequences of elevated pCO2.