3 resultados para floor heating system
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Measurements of 14C in the organic carbon (OC) and elemental carbon (EC) fractions, respectively, of fine aerosol particles bear the potential to apportion anthropogenic and biogenic emission sources. For this purpose, the system THEODORE (two-step heating system for the EC/OC determination of radiocarbon in the environment) was developed. In this device, OC and EC are transformed into carbon dioxide in a stream of oxygen at 340 and 650 �C, respectively, and reduced to filamentous carbon. This is the target material for subsequent accelerator mass spectrometry (AMS) 14C measurements, which were performed on sub-milligram carbon samples at the PSI/ETH compact 500 kV AMS system. Quality assurance measurements of SRM 1649a, Urban Dust, yielded a fraction of modern fM in total carbon (TC) of 0.522 ±0.018 (n ¼ 5, 95% confidence level) in agreement with reported values. The results for OC and EC are 0.70± 0.05 (n ¼ 3) and 0.066 ± 0.020 (n ¼ 4), respectively.
Resumo:
Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.
Resumo:
Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems.