25 resultados para fishing season
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To study whether onset of infantile spasms manifests seasonal variation, as previously reported, and whether any such seasonality is associated with treatment response and long-term outcome, data for 57 patients were retrospectively reviewed. The data were collected from hospital files and through a mail survey of children with infantile spasms born from 1980 to 2002 and monitored at the University Children's Hospital of Berne, Switzerland. The mean age at time of onset of infantile spasms was 7 months (range, 0.75-40), at diagnosis 8 months (range, 1-42) and at follow-up 11.3 years (range, 1-23 years). In 77% of participants, the etiology of infantile spasms was known (symptomatic); in the remaining 23% it was not known (nonsymptomatic). In contrast to previous findings, onset of infantile spasms was not associated with calendar month, photoperiod, or global solar radiation. Long-term prognosis was poor: 4 of the 57 (7%) children died; 49 (86%) had cognitive impairment and 40 (70%) had physical impairment; 31 (54%) had cerebral palsy, 37 had (65%) persistent seizures, and 9 (16%) had Lennox-Gastaut syndrome. Symptomatic infantile spasms were associated with worse cognitive outcome (P < 0.001), but treatment modality and overall duration of infantile spasms were not. There was no association of calendar month or photoperiod at onset with cognitive outcome or treatment response.
Resumo:
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. • At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995–2000. The series was extended to 1988–2004 with less detailed data. Individual transitions in phenology were analysed. • Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. • Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An ‘alternative bearing’ system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.
Resumo:
The identification of targets whose interaction is likely to result in the successful treatment of a disease is of growing interest for natural product scientists. In the current study we performed an exemplary application of a virtual parallel screening approach to identify potential targets for 16 secondary metabolites isolated and identified from the aerial parts of the medicinal plant RUTA GRAVEOLENS L. Low energy conformers of the isolated constituents were simultaneously screened against a set of 2208 pharmacophore models generated in-house for the IN SILICO prediction of putative biological targets, i. e., target fishing. Based on the predicted ligand-target interactions, we focused on three biological targets, namely acetylcholinesterase (AChE), the human rhinovirus (HRV) coat protein and the cannabinoid receptor type-2 (CB (2)). For a critical evaluation of the applied parallel screening approach, virtual hits and non-hits were assayed on the respective targets. For AChE the highest scoring virtual hit, arborinine, showed the best inhibitory IN VITRO activity on AChE (IC (50) 34.7 muM). Determination of the anti-HRV-2 effect revealed 6,7,8-trimethoxycoumarin and arborinine to be the most active antiviral constituents with IC (50) values of 11.98 muM and 3.19 muM, respectively. Of these, arborinine was predicted virtually. Of all the molecules subjected to parallel screening, one virtual CB (2) ligand was obtained, i. e., rutamarin. Interestingly, in experimental studies only this compound showed a selective activity to the CB (2) receptor ( Ki of 7.4 muM) by using a radioligand displacement assay. The applied parallel screening paradigm with constituents of R. GRAVEOLENS on three different proteins has shown promise as an IN SILICO tool for rational target fishing and pharmacological profiling of extracts and single chemical entities in natural product research.
Resumo:
In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.
Resumo:
This study presents a proxy-based, quantitative reconstruction of cold-season (mean October to May, TOct–May) air temperatures covering nearly the entire last millennium (AD 1060–2003, some hiatuses). The reconstruction was based on subfossil chrysophyte stomatocyst remains in the varved sediments of high-Alpine Lake Silvaplana, eastern Swiss Alps (46°27’N, 9°48′W, 1791 m a.s.l.). Previous studies have demonstrated the reliability of this proxy by comparison to meteorological data. Cold-season air temperatures could therefore be reconstructed quantitatively, at a high resolution (5-yr) and with high chronological accuracy. Spatial correlation analysis suggests that the reconstruction reflects cold season climate variability over the high- Alpine region and substantial parts of central and western Europe. Cold-season temperatures were characterized by a relatively stable first part of the millennium until AD 1440 (2σ of 5-yr mean values = 0.7 °C) and highly variable TOct–May after that (AD 1440–1900, 2σ of 5-yr mean values = 1.3 °C). Recent decades (AD, 1991-present) were unusually warm in the context of the last millennium (exceeding the 2σ-range of the mean decadal TOct–May) but this warmth was not unprecedented. The coolest decades occurred from AD 1510–1520 and AD 1880–1890. The timing of extremely warm and cold decades is generally in good agreement with documentary data representing Switzerland and central European lowlands. The transition from relatively stable to highly variable TOct–May coincided with large changes in atmospheric circulation patterns in the North Atlantic region. Comparison of reconstructed cold season temperatures to the North Atlantic Oscillation index (NAO) during the past 1000 years showed that the relatively stable and warm conditions at the study site until AD 1440 coincided with a persistent positive mode of the NAO. We propose that the transition to large TOct–May variability around AD 1440 was linked to the subsequent absence of this persistent zonal flow pattern, which would allow other climatic drivers to gain importance in the study area. From AD 1440–1900, the similarity of reconstructed TOct–May to reconstructed air pressure in the Siberian High suggests a relatively strong influence of continental anticyclonic systems on Alpine cold season climate parameters during periods when westerly airflow was subdued. A more continental type of atmospheric circulation thus seems to be characteristic for the Little Ice Age in Europe. Comparison of Toct–May to summer temperature reconstructions from the same study site shows that, as expected, summer and cold season temperature trends and variability differed completely throughout nearly the entire last 1000 years. Since AD 1980, however, summer and cold season temperatures show a simultaneous, strong increase, which is unprecedented in the context of the last millennium. We suggest that the most likely explanation for this recent trend is anthropogenic greenhouse gas (GHG) forcing.