34 resultados para finite strain, structural geology, ductile strain, microstructure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
This manuscript deals with the adaptation of quartz-microfabrics to changing physical deformation conditions, and discusses their preservation potential during subsequent retrograde deformation. Using microstructural analysis, a sequence of recrystallization processes in quartz, ranging from Grain-Boundary Migration Recrystallization (GBM) over Subgrain-Rotation Recrystallization (SGR) to Bulging Nucleation (BLG) is detected for the Simplon fault zone (SFZ) from the low strain rim towards the internal high strain part of the large-scale shear zone. Based on: (i) the retrograde cooling path; (ii) estimates of deformation temperatures; and (iii) spatial variation of dynamic recrystallization processes and different microstructural characteristics, continuous strain localization with decreasing temperature is inferred. In contrast to the recrystallization microstructures, crystallographic preferred orientations (CPO) have a longer memory. CPO patterns indicative of prism and rhomb glide systems in mylonitic quartz veins, overprinted at low temperatures (�400 �C), suggest inheritance of a high-temperature deformation. In this way, microstructural, textural and geochemical analyses provide information for several million years of the deformation history. The reasons for such incomplete resetting of the rock texture is that strain localization is caused by change in effective viscosity contrasts related to temporal large- and small-scale temperature changes during the evolution of such a long-lived shear zone. The spatially resolved, quantitative investigation of quartz microfabrics and associated recrystallization processes therefore provide great potential for an improved understanding of the geodynamics of large-scale shear zones.
Resumo:
Plane strain simple shearing of norcamphor (C7H10O) in a see-through deformation rig to a shear strain of γ = 10.5 at a homologous temperature of Th = 0.81 yields a microfabric similar to that of quartz in amphibolite facies mylonite. Synkinematic analysis of the norcamphor microfabric reveals that the development of a steady-state texture is linked to changes in the relative activities of several grain-scale mechanisms. Three stages of textural and microstructural evolution are distinguished: (1) rotation and shearing of the intracrystalline glide planes are accommodated by localized deformation along three sets of anastomozing microshears. A symmetrical c-axis girdle reflects localized pure shear extension along the main microshear set (Sa) oblique to the bulk shear zone boundary (abbreviated as SZB); (2) progressive rotation of the microshears into parallelism with the SZB increases the component of simple shear on the Sa microshears. Grain-boundary migration recrystallization favours the survival of grains with slip systems oriented for easy glide. This is associated with a textural transition towards two stable c-axis point maxima whose skeletal outline is oblique with respect to the Sa microshears and the SZB; and (3) at high shear strains (γ > 8), the microstructure, texture and mechanism assemblage are strain invariant, but strain continues to partition into rotating sets of microshears. Steady state is therefore a dynamic, heterogeneous condition involving the cyclic nucleation, growth and consumption of grains.
Resumo:
The anisotropy of magnetic susceptibility (AMS) has been measured with low- and high-field methods, in deformed carbonate rocks along the Morcles nappe shear zone (Helvetic Alps). High-field measurements at room temperature and 77 K enable the separation of the ferrimagnetic, paramagnetic and diamagnetic anisotropy. The ferrimagnetic sub-fabric is generally insignificant in these rocks, contributing less than 10% to the total AMS. AMS results for both the separated diamagnetic and paramagnetic subfabrics are consistent with the regional shear movement in the late-stage formation of the Helvetic nappes, as seen in the Morcles nappe, whose inverted limb indicate shear displacement towards the northwest. The diamagnetic anisotropy correlates well quantitatively with the calculated magnetic anisotropy based on the calcite texture. There is a gradational change in the degree of anisotropy related to the strain gradient along the shear zone. A more complex magnetic fabric, resulting from partial overprinting due to displacement along the Simplon–Rhône fault, is evident at one site near the root zone of the nappe. Partial overprinting of the magnetic fabric appears to have taken place in two locations farther up the shear zone as well. This late phase deformation is associated with recent exhumation of the Mont Blanc and Belledonne external massifs and orogen parallel extension, and is reflected by the AMS. Rocks with bulk susceptibility ∼0 SI, and simple mineral compositions are ideal for low temperature high-field torque, as this method helps to enhance the paramagnetic susceptibility and anisotropy, which may otherwise be masked by the mixed magnetic contributions of the composite magnetic fabric.
Resumo:
We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing, and pop-up width from model to nature.
Resumo:
Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent ‘deformation’ microfabrics while white mylonites are characterised by ‘recrystallisation’ microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.
Resumo:
Analogue and finite element numerical models with frictional and viscous properties are used to model thrust wedge development. Comparison between model types yields valuable information about analogue model evolution, scaling laws and the relative strengths and limitations of the techniques. Both model types show a marked contrast in structural style between ‘frictional-viscous domains’ underlain by a thin viscous layer and purely ‘frictional domains’. Closely spaced thrusts form a narrow and highly asymmetric fold-and-thrust belt in the frictional domain, characterized by in-sequence propagation of forward thrusts. In contrast, the frictional-viscous domain shows a wide and low taper wedge and a thrust belt with a more symmetrical vergence, with both forward and back thrusts. The frictional-viscous domain numerical models show that the viscous layer initially simple shears as deformation propagates along it, while localized deformation resulting in the formation of a pop-up structure occurs in the overlying frictional layers. In both domains, thrust shear zones in the numerical model are generally steeper than the equivalent faults in the analogue model, because the finite element code uses a non-associated plasticity flow law. Nevertheless, the qualitative agreement between analogue and numerical models is encouraging. It shows that the continuum approximation used in numerical models can be used to model frictional materials, such as sand, provided caution is taken to properly scale the experiments, and some of the limitations are taken into account.
The role of second phases for controlling microstructural evolution in polymineralic rocks: A review