43 resultados para field methods
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: The literature on the applications of homeopathy for controlling plant diseases in both plant pathological models and field trials was first reviewed by Scofield in 1984. No other review on homeopathy in plant pathology has been published since, though much new research has subsequently been carried out using more advanced methods. Objectives: To conduct an up-to-date review of the existing literature on basic research in homeopathy using phytopathological models and experiments in the field. Methods: A literature search was carried out on publications from 1969 to 2009, for papers that reported experiments on homeopathy using phytopathological models (in vitro and in planta) and field trials. The selected papers were summarized and analysed on the basis of a Manuscript Information Score (MIS) to identify those that provided sufficient information for proper interpretation (MIS ≥ 5). These were then evaluated using a Study Methods Evaluation Procedure (SMEP). Results: A total of 44 publications on phytopathological models were identified: 19 papers with statistics, 6 studies with MIS ≥ 5. Publications on field were 9, 6 with MIS ≥ 5. In general, significant and reproducible effects with decimal and centesimal potencies were found, including dilution levels beyond the Avogadro's number. Conclusions: The prospects for homeopathic treatments in agriculture are promising, but much more experimentation is needed, especially at a field level, and on potentisation techniques, effective potency levels and conditions for reproducibility. Phytopathological models may also develop into useful tools to answer pharmaceutical questions.
Resumo:
Aims The biochemical defense of lichens against herbivores and its relationship to lichen frequency are poorly understood. Therefore, we tested whether chemical compounds in lichens act as feeding defense or rather as stimulus for snail herbivory among lichens and whether experimental feeding by snails is related to lichen frequency in the field. Methods In a no-choice feeding experiment, we fed 24 lichen species to snails of two taxa from the Clausilidae and Enidae families and compared untreated lichens and lichens with compounds removed by acetone rinsing. Then, we related experimental lichen consumption with the frequency of lichen species among 158 forest plots in the field (Schwäbische Alb, Germany), where we had also sampled snail and lichen species. Important findings In five lichen species, snails preferred treated samples over untreated controls, indicating chemical feeding defense, and vice versa in two species, indicating chemical feeding stimulus. Interestingly, compared with less frequent lichen species, snails consumed more of untreated and less of treated samples of more frequent lichen species. Removing one outlier species resulted in the loss of a significant positive relationship when untreated samples were analyzed separately. However, the interaction between treatment and lichen frequency remained significant when excluding single species or including snail genus instead of taxa, indicating that our results were robust and that lumping the species to two taxa was justified. Our results imply lichen-feeding snails to prefer frequent lichens and avoid less frequent ones because of secondary compound recognition. This supports the idea that consumers adapt to the most abundant food source.
Resumo:
Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.
Resumo:
Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and I crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mossbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a*-axis and the maximum susceptibility is generally parallel to the crystallographic b-axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a-axis, and maximum susceptibility aligned with c. In richterite, however, the intermediate susceptibility is parallel to the b-axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, k', increases generally with Fe concentration, following a linear trend: k' = 1.61 x 10(-9) Fe - 1.17 x 10(-9) m(3)/kg. Additionally, it may depend on the Fe2+/Fe3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Fen-oactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.
Resumo:
OBJECTIVES The purpose of the study was to provide empirical evidence about the reporting of methodology to address missing outcome data and the acknowledgement of their impact in Cochrane systematic reviews in the mental health field. METHODS Systematic reviews published in the Cochrane Database of Systematic Reviews after January 1, 2009 by three Cochrane Review Groups relating to mental health were included. RESULTS One hundred ninety systematic reviews were considered. Missing outcome data were present in at least one included study in 175 systematic reviews. Of these 175 systematic reviews, 147 (84%) accounted for missing outcome data by considering a relevant primary or secondary outcome (e.g., dropout). Missing outcome data implications were reported only in 61 (35%) systematic reviews and primarily in the discussion section by commenting on the amount of the missing outcome data. One hundred forty eligible meta-analyses with missing data were scrutinized. Seventy-nine (56%) of them had studies with total dropout rate between 10 and 30%. One hundred nine (78%) meta-analyses reported to have performed intention-to-treat analysis by including trials with imputed outcome data. Sensitivity analysis for incomplete outcome data was implemented in less than 20% of the meta-analyses. CONCLUSIONS Reporting of the techniques for handling missing outcome data and their implications in the findings of the systematic reviews are suboptimal.
Resumo:
The anisotropy of magnetic susceptibility (AMS) has been measured with low- and high-field methods, in deformed carbonate rocks along the Morcles nappe shear zone (Helvetic Alps). High-field measurements at room temperature and 77 K enable the separation of the ferrimagnetic, paramagnetic and diamagnetic anisotropy. The ferrimagnetic sub-fabric is generally insignificant in these rocks, contributing less than 10% to the total AMS. AMS results for both the separated diamagnetic and paramagnetic subfabrics are consistent with the regional shear movement in the late-stage formation of the Helvetic nappes, as seen in the Morcles nappe, whose inverted limb indicate shear displacement towards the northwest. The diamagnetic anisotropy correlates well quantitatively with the calculated magnetic anisotropy based on the calcite texture. There is a gradational change in the degree of anisotropy related to the strain gradient along the shear zone. A more complex magnetic fabric, resulting from partial overprinting due to displacement along the Simplon–Rhône fault, is evident at one site near the root zone of the nappe. Partial overprinting of the magnetic fabric appears to have taken place in two locations farther up the shear zone as well. This late phase deformation is associated with recent exhumation of the Mont Blanc and Belledonne external massifs and orogen parallel extension, and is reflected by the AMS. Rocks with bulk susceptibility ∼0 SI, and simple mineral compositions are ideal for low temperature high-field torque, as this method helps to enhance the paramagnetic susceptibility and anisotropy, which may otherwise be masked by the mixed magnetic contributions of the composite magnetic fabric.
Resumo:
In absence of basic canine hip biomechanics, a specific, consequent three dimensional concept to evaluate the coxofemoral joint was developed for the dog. With the help of a new method to radiologically demonstrate the hip in a physiological standing position several new clinically relevant aspects could be further investigated. For example the breed specific anatomical differences in the hip, and dynamics and the background on "iatrogenic luxations" in HD diagnostics could be shown. The caudal luxation and the growth abnormalities of the hip and their consequences on the whole leg (antetorsion syndrome) as a consequence of inadequate breeding could be demonstrated.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.